
A Generalized Trusted Virtualized Platform Architecture

Anbang Ruan Qingni Shen Yuanyou Yin
School of Software and Microelectronics. Peking University. Beijing, China.

anbang@pku.edu.cn qingnishen@ss.pku.edu.cn yuanyou1206@gmail.com

Abstract

Problems of overall safety management, appropri-
ate load balance, and the need for easy-to-use emerge
in an environment containing multiple Trusted Virtua-
lized Platforms. We proposed the Generalized Trusted
Virtualized Platform architecture, GTVP, which com-
bines multiple physical platforms as a trusted union.
GTVP first establishes trust relationship among all
platforms, and then synchronizes their resource and
security information for unified management. Moreo-
ver, GTVP supports fast and secure migration to re-
solve the overall load-balance issue. Host OS (as in
Xen) of GTVP is divided into five control domains for
minimizing TCB and Guest OS of certain application
(called as Lazy Box) cut into components for rapid
deployment and upgrade. As a result, administrators
can manage multiple platforms in a similar way as in a
single platform and get the benefits of security, effi-
ciency and easy-to-use while obtaining transparency
and flexibility. Three scenarios are demonstrated to
show their efficiency in the GTVP architecture.

Keywords: Trusted computing platform, virtualization,
migration, trusted virtual machine manager.

1. Introduction

The application of the combination of Virtualization

Technology [1] and Trusted Computing Technology [2]
becomes popular nowadays. Several studies had
achieved this combination, such as Terra [3] and
OpenTC [4]. However, most works focus on a separate
physical platform. Most enterprise applications require
the collaboration of more than one physical platform to
provide users with trusted and consistent services. The
multi-platform environment faces following three
problems.

Security Management Many security threats de-
rive from inappropriate management. For multiple
hardware platforms’ collaboration, administrators have
to deal with details such as creating secure communi-

cation channels and guaranteeing trusted sharing and
isolation.

Load Balance In a virtualized environment, admin-
istrator can migrate virtual machines from over-loaded
platform to under-loaded ones for overall load balanc-
ing [5]. However, administrator’s control, whether
directly (manually) or indirectly (scripts executed), is
frequently needed, which may bring security threats.
Moreover, fast migration for the short-time load bal-
ance requirements is another critical issue.

Easy-to-Use In order to deploy applications on a
Trusted Virtualization Platform, users should first con-
figure virtual machines, then the Guest OSes and at last
the applications. After that, he/she needs to adjust se-
curity policies in the TVMM (Trusted Virtual Machine
Monitor) and in the Guest OS. Meanwhile, for upgrad-
ing and patching, users need to concern every VM [6].
Thus, rapid deployment and application management
for multiple hardware platforms are also very impor-
tant issues.

We propose a unified platform -- GTVP (Genera-
lized Trusted Virtualized Platform) to tackle above
problems. GTVP is the combination of separate virtua-
lized platforms (called member platforms or members).
These platforms have established trusted relation mu-
tually, and possess all other members’ resource and
security information. They cooperate via security pro-
tocols and manage hardware resources, management
strategy and security policies in a uniform manner.
Thus, GTVP provides a series of unified, transparent
and trusted services for its upper application layer.

In GTVP architecture, administrator needs only to
configure local security policies and launch the con-
necting process to a target GTVP. GTVP automatically
extends trust chain to the new member and synchroniz-
es its resource and security information with all other
members. Henceforth, GTVP protect all subsequent
communication between members, and synchronize all
information updates. GTVP automatically migrate ap-
plications or VMs among members for load balancing,
while guaranteeing security by strictly control the en-
tire migration process under security policies. Finally,
GTVP achieves Easy-to-use property by Lazy Box

The 9th International Conference for Young Computer Scientists

978-0-7695-3398-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ICYCS.2008.508

2340

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:23:15 UTC from IEEE Xplore. Restrictions apply.

technique, which assembles a minimal run time envi-
ronment for application dynamically according to pre-
vious configured resource and security profiles.

We first incise host OS (or Domain 0 in Xen [7]) in-
to five domains presiding over different security func-
tionalities. We then disaggregate the guest OS (or Do-
main U in Xen) into small OS Components, which are
building blocks for Lazy Boxes. We also provide me-
thods to optimize dynamic migration, configuration
and deployment, such as OS Component Cache and
parallel migration technologies. Finally, we propose
attestation related mechanisms, such as attestation ex-
piration count, attestation information sharing and
transferring mechanism to ensure continuous integrity
and enhance attestation efficiency.

The rest of this paper is organized as follows. Sec-
tion 2 introduces GTVP architecture, as well as G-
TVMM, Control Domains and Lazy Box. Section 3
introduces key technologies, such as platform connec-
tion, effective migration mechanism, continuous attes-
tation mechanism and secure policy management me-
chanism. Section 4 describes three scenarios of GTVP
according to platform design goals. Section 5 discusses
related work, and there will be conclusion and future
work introduced in section 6.

2. GTVP Security Architecture

The following four design principles guide our de-

sign of GTVP architecture: (1) Secure: GTVP architec-
ture should be constructed in accord with TCG specifi-
cations and be designed with security protocols for
trusted connection and communication between physi-
cal platforms. (2) Efficient: Dynamical load balance
mainly under the control of secure and fast migration
technology in GTVP should optimize the overall effi-
ciency and satisfy most applications’ requirements on
best-effort. (3) Simple: GTVP should reduce complexi-
ty of deployment and improve transparence or easy-to-
use, making the operation on a GTVP as similar as that
on a commodity OS. (4) Flexible: GTVP should leve-
rage security, efficiency and simplicity by flexible pol-
icy configuration and maintenance mechanism to sup-
port maximum types of security requirements.

Figure 1 outlines our general architecture of GTVP.
It is a three-layer-structure: Hardware Layer, Virtuali-
zation Layer and Application Layer. The Hardware
Layer may comprise various sets of hardware with
different architectures, at least one of which contains
TPM [2]. GTVP links (Trusted) Virtual Machine Moni-
tors (TVMM and VMM) from all members via secure
connection to form its Virtualization Layer -- Genera-
lized TVMM (G-TVMM). Control Domains above G-
TVMM is effectively external implementation of some

G-TVMM functionalities. G-TVMM, Control Domains
and all underlying hardware devices compose the TCB
of the GTVP. GTVP encapsulates applications in three
types of Virtual Machines, named Boxes in GTVP ter-
minology, namely Open Box, Close Box and Lazy Box.
We derive the former two from Terra [3], and design
Lazy Box especially for GTVP. We will describe G-
TVMM, Control Domains and Boxes in the following
three sections respectively.

Figure 1. GTVP architecture

2.1 G-TVMM

G-TVMM plays three roles in GTVP. First, it im-
plements the interfaces of GTVP. For applications, G-
TVMM abstracts virtual hardware device interfaces,
guarantees isolation and enforces effective resources
sharing and communication among applications. For
administrators, it provides interfaces for management
of virtual machines, security, attestation, migration and
overall platform. Further, G-TVMM resides directly
upon hardware layer. It manages and dispatches hard-
ware resources uniformly, guaranteeing secure and
effective access. It provides integrity attestation, cryp-
tology services and key management service from
TPM for the upper layer. Finally, G-TVMM enforces
communication of member platforms’ TVMMs or
VMMs. G-TVMM completes the following tasks for
members: information synchronization (hardware re-
sources status, security and management information);
hardware resources requisition and concession; mutual
attestations; secure migrations, etc.

G-TVMM is the core component in GTVP architec-
ture; hence, its security and efficiency directly influ-
ence the overall platform. We leave only basic functio-
nalities inside TVMM, and extract others out as inde-
pendent functional components. This decision has fol-
lowing benefits: (1) least privilege control, since aux-
iliary functions reside outside TVMM, one’s failure
will not lead to the crash of others; (2) low complexity,
the scale of TVMM’s source code is reduced, which
makes formal proving of the TVMM realizable. Mean-

2341

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:23:15 UTC from IEEE Xplore. Restrictions apply.

while, it is convenience for integrity attestation of plat-
form, because only the attestations of necessary com-
ponents are enough.

Xen [7] is a typical implementation of this approach.
Its VMM implements only three basic functions, name-
ly CPU scheduling, memory management and inter-
domain sharing and communication. However, all the
remaining functions are implemented in a single privi-
leged domain (named Domain 0). In recent years, Xen
community makes important steps in incising Domain
0 [8]. They have extracted device drivers form Domain
0, constructing a separate domain -- DDD (Device
Driver Domain). We embrace Xen’s philosophy, and
make advance steps: we further incise the remaining
Domain 0 into MD (Management Domain) and SSD
(Security Service Domain), and then add CD (Com-
munication Domain) and OSCD (OS Component Do-
main). These five domains together constitute GTVP’s
Control Domains.

 2.2 Control Domains

Device Driver Domain manages Backend Device
Drivers for every VM. Backend Device Driver is the
“real” driver for physical hardware. On the other side,
the Frontend Device Driver is the driver in virtual ma-
chines but only forwards request to and receives result
from the corresponding Backend Device Driver. This
mechanism guarantees isolation between applications
and device drivers.

Management Domain is mainly responsible for ba-
sic management of VMs, such as creation, destroy,
suspend and recovery. Administrator can also modify
VMs’ configuration, explicitly assign them for attesta-
tion or migration. Moreover, MD collects usage infor-
mation of local hardware resource, including network
loading, memory occupation, CPU running status and
so on. Both administrators and other domains can use
these information, for instance, CD could use them to
make migration decision. MD is the interface and en-
trance for administrator to control the overall platform.

Security Service Domain manages and enforces
security policy. It defines policy transition rules for
local platform to synchronize its policy with overall
platform. In addition, security services domain utilize
trusted physical devices, e.g. TPM to provide extra
security services, such as encryption and decryption,
key management and integrity attestation. This domain
employs various mechanisms to guarantee the efficien-
cy of integrity attestation process.

OS Component Domain manages OS components
for Lazy Box. It automatically instantiates components
by pre-defined configuration files. OSCD maintains a
component cache, which stores components used re-
cently. It enables fast migration and rapid deployment.

We will describe it in the following section. On the
other side, the higher frequency the component used
the more possibility of being attacked. Hence, we as-
sign an attestation expiration count for each component.
GTVP attests to or reload the component whose used
time exceeds the count. As a result, GTVP focus attes-
tation efforts on components with most security needs.
For example, we assign lower counts to components
with high-level sensitivity, so they can have higher
attestation frequency.

Communication Domain connects member plat-
forms and synchronizes their configurations. It imple-
ments a set of security protocols for inter-members
communication, namely HSP (Handshake Protocol),
CSP (Configuration Synchronization Protocol), RRP
(Resources Requirement Protocol), SMP (Secure Mi-
gration Protocol) and SCP (Secure Configuration Pro-
tocol). HSP manages the process of a platform joining
or leaving GTVP. CSP synchronizes the resource con-
figuration and corresponding security and management
information of local platform to all other members. For
dynamic information synchronizing, GTVP adopts a
requesting approach, which is accomplished by RRP. If
local platform is over-loaded, it multicast request for
hardware resources, and migrates some of its VMs to
appropriate platforms. Secure and efficient migration is
implemented by SMP. Finally, SCP synchronizes the
secure policy of local platform with all other members
according to the pre-defined policy transition rules.

2.3 Virtual Machines

Virtual Machines are the run-time environments for
applications. GTVP supports three kinds of VMs: Open
Box, Close Box and Lazy Box. Open Box is a typical
virtual machine equipped with commodity OS and
provides appearance of general-purpose platform.
Close Box is a virtual machine with specialized execut-
ing environment and especially OS configured explicit-
ly for particular application. Lazy Box provides appli-
cations a minimum executing environment by combin-
ing appropriate OS Components from OSCD dynami-
cally. It enables the features of safe and rapid deploy-
ment, convenient upgrade, secure and efficient migra-
tion and attestation.

For rapid deployment, administrator provides appli-
cation image and a list of dependency, e.g. version of
OS kernel, various dependent libraries, etc. GTVP first
resorts to OSCD for necessary dependencies, then from
other members, and at last, acquires remaining from
administrators. GTVP attest to all components, guaran-
teeing their integrity. When application runs for the
first time, GTVP combine necessary components to
form a Lazy Box for encapsulating the specific appli-
cation. Each time when application encounters a de-

2342

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:23:15 UTC from IEEE Xplore. Restrictions apply.

pendency-missing-fault, GTVP activates related com-
ponents in OSCD, and links them with the Lazy Box.
For efficient migration, GTVP construct a identical
Lazy Box at target member, and simply migrate the
dynamic part of application, e.g. CPU status, stacks
and heaps from memory, etc. GTVP protects the entire
process of migration by attestation mechanism, securi-
ty protocol and security policies. For efficient attesta-
tion, GTVP attest to only the needed components, re-
ducing attestation overhead, while gaining security by
attesting secure concerning components more frequent-
ly. We will examine migration and attestation related
mechanism in Section 3.3 and 3.4 respectively.

3. Methods for Constructing GTVP

3.1 Platform Connection

GTVP seamlessly connects all the members in three
steps, forming a unified platform. Firstly, it connects
every member’s TCB to form its virtual TCB or vTCB,
which shields bottom details for the upper layer, such
as hardware configurations and network topology.
Each member preserves all members’ configuration.
This requires: (a) Mutual trust be established between
members. In GTVP terminologies, it is the Horizon
Extension of trust chain. During the stage of platform
establishment, GTVP utilizes HSP to establish trust
relationship, which utilizes remote attestation mechan-
ism from TCG. During normal operation, GTVP pro-
tects connection between members with various securi-
ty protocols. (b) Platforms must synchronize resource
information in a safe and reliable way. GTVP utilizes
CSP for safe and efficient information transmission,
including hardware configuration, security informa-
tion, trust and other security information.

Secondly, GTVP combines security information of
all members, forming a unified global security configu-
ration, which includes the security level of all re-
sources among every member and security policy of
every member. We utilize SCP for unified manage-
ment and enforcement of overall security policy.

Lastly, from the application point of view, in accor-
dance with its resource demand, GTVP migrates it
among the members dynamically. We will investigate
migration mechanism in the next section.

3.2 Enforcing dynamic and fast Migration

The core of GTVP is its efficient and secure migra-
tion mechanism. GTVP enables applications to access
resources among all members by migrating applica-
tions to the member that possesses the needed re-
sources. There are mainly two types of migration tech-

niques: virtual machine migration [5] and process mi-
gration [9]. The first transfers the entire virtual ma-
chine. It supports both checked-point migration (i.e.
suspending-copy-awakening) and live migration. How-
ever, its overhead is too high for short-term load ba-
lancing. Process migration technique adds an external
pack to the process, which reduces process’s depen-
dence to local platform. Hence, migration is performed
by transferring the entire pack directly. The overhead is
relative small but it suffers the pain of platform hetero-
geneous.

The migration mechanism in GTVP takes the ad-
vantages of both techniques while avoiding their short-
comings. First, GTVP still migrates virtual machine. It
acts as a middle-ware between VM and hardware,
hence it provides a homogeneous platform. Meanwhile,
we derives the techniques developed in [10] to incise
the virtual machine into pieces (OS components), the
source member transfers only the needed components,
reducing the transferring overhead.

Figure 2. Migration process

Figure 2 demonstrates the migration process. Target

member can have multiple sources for OS components:
it first searches the needed components in component
cache, and then it searches the static local image files.
Further, it sends requisition to other members for
needed components. Because the needed components
may exist in more than one member, the target can
select different members as sources for different com-
ponents, realizing multi-source parallel migration.

All members have attested to each other before mi-
gration, and the entire migrating process is protected
by security protocol. When the migration completes,
GTVP attest related components and extend the Vertic-
al trust chain. Thus, GTVP guarantees the security of
migration. When GTVP accomplishes all transferring
and attestation, it generates the specific Lazy Box at
the target member.

Since the application on platform is relatively sta-
ble, components increase at a relatively slow speed. In
addition, with cache mechanism, components can
quickly distribute to every members of the platform. In
the vast majority of time, GTVP simply migrates appli-

2343

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:23:15 UTC from IEEE Xplore. Restrictions apply.

cation and it corresponding state. If applications are
further divided into static and dynamic parts, GTVP
can just transfer the dynamic one (running states),
which will further reduce the migration cost.

3.3 Continuous and Valid Attestation

The attestation techniques [2] in current trusted
platform have two major drawbacks: (1) Large granu-
larity. In most of time, we only need to attest parts of
the system. (2)Lack of continuous guarantee. TCG’s
attestation mechanism is performed at system initializ-
ing or application loading. It cannot guarantee that the
process will always be in an integrated state.

GTVP only need to attest those needed OS compo-
nents. In addition, fine-grained control can enhance
attestation efficiency by parallel attesting. On the other
hand, GTVP assigns different OS Components differ-
ent attestation expiration counts according to their se-
curity levels. Components will no longer be considered
safe and must be attested or loaded again when their
invoking times exceed theirs count. Hence, for applica-
tions or components with higher security needs, GTVP
assigns them higher attestation frequency. Otherwise,
GTVP saves attestation efforts for efficiency.

Attestation information can be shared among mem-
bers as long as trust relationship has been established.
As a result, applications residing on different members
do not need to attest each other from the bottom step-
by-step. As long as they are trusted by their local plat-
form, they can trust each other. For example, there is
an application A on platform B and C on platform D.
At the time of loading, A and C were attested to their
local member respectively, i.e. B and D, since B and D
have reached trust relationship, A and C can trust each
other naturally.

Any member can send their trust information to
others, as long as they trust mutually. Thereby GTVP
reduces duplicate attestations. However, this will bring
potential safety problems, e.g. components with vulne-
rability would be trusted by more members. This flaw
can be make up by attestation expiration mechanism –
according to security needs, administrators can choose
the intensity of component attestation. This is another
proof of GTVP ’s flexibility.

3.4 Security Policy Management

Security policy is the soul of GTVP because it con-
trols the three most important functionalities: resource
management, migration decision, and attestation inten-
sity. GTVP enforces strict supervision upon applica-
tions’ access to resources once the administrator have
labeled the subjects and objects and specified the poli-
cy. Furthermore, GTVP automatically migrates appli-

cations to appropriate members when local resources
are unavailable or insufficient, as long as those applica-
tions have permission to access target resources. Again,
this action is supervised in accordance with security
policy. In addition, as described above, object’s securi-
ty level also affects the attestation expiration count,
which further affects the attestation intensity.

When a new platform is joining a GTVP, its local
security information will be synchronized with every
member. There are two typical methods to achieve this
synchronization [11]: (1) the new platform is inherent-
ly dedicated to a particular GTVP. Therefore, it confi-
gures its security information in accordance with that
GTVP. This method facilitates the platforms with low-
er mobility needs, i.e. they only connect to a designat-
ed GTVP. (2) The new platform has its own pattern of
security information, and predefines transition rules for
each targeted GTVP. This method is applicable to the
platforms with higher mobility needs, e.g. a notebook
needs to join different GTVP at different time.

In order to differentiate members in the GTVP, we
propose the concept of platform identity. Platform
identity is determined by the identification of the cur-
rent user of the local member. It represents the current
security status of the local member, i.e. it is a reference
security level. It indicates the highest security level the
subjects and objects in the member can obtain, and it
restricts the inward migration of applications with
higher security level. Furthermore, the identity could
also aid clarifying the relationship among members. In
some scenarios, members with higher security identity
can gain more control. For example, when we organize
members with a star topology, the central unit can be
the member with the highest identity.

4. Case Study

In this section, we will demonstrate concrete exam-
ples for how GTVP satisfies all three requirements

4.1 Dynamic Load Balancing

Tradition Platform: Suppose a company supplying

web services. It employs a mainframe hosting its three
servers, namely a Web server, a database server and an
application server, with each server running inside an
individual VM; three computers with middle-
processing capability, with each hosting two VMs dep-
loyed with services development and testing environ-
ment respectively; and a commodity PC for daily man-
agement (Figure 3(a)).

Requisitions for services tend to concentrate in cer-
tain time of the day, and machines for development
and testing may only be over loaded during the process

2344

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:23:15 UTC from IEEE Xplore. Restrictions apply.

of compiling, debugging and testing. For overall load
balancing, administrator may migrate appropriate ap-
plications among different platforms. Either manual or
script-controlled will introduce extra manage complex-
ities and security vulnerabilities.

Figure 3. Dynamic Load Balancing

GTVP: GTVP deploys application on arbitrary

member, and migrates them dynamically (Figure 3(b)).
For example, when web server acquires more
processing capability, GTVP migrate it to a member
with sufficient resources and appropriate security
attributes. GTVP balance the loading of overall ma-
chines dynamically, reducing hardware cost and man-
agement complexities.

In addition, once administrator discovers the needs
for adding computing capability, what he needs to do is
just connect a new machine it to the GTVP. GTVP
takes efforts to re-balance the overall platform loading.
The entire process is just like to “hot-plug” new com-
puting power to the GTVP. Furthermore, platform can
also contract as needed, e.g. for maintenance or cost
saving purpose.

4.2 Easy-to-use

Tradition Platform: Following previous scenario,

there are three servers, three development environ-
ments, three testing environments and a management
environment, each of which needs a VM. Therefore,
there would be ten VMs to deploy. Administrator needs
to configure each virtual machine’s virtual resources
and OS, which brings much management burden. On
the other hand, when the underlying infrastructure
needs patch of update, administrators have to repeat
these tasks for every VM.

GTVP: With Lazy Box, GTVP automatically gene-
rates VM and Guest OS for applications. Users could
install application in a similar way as in traditional OS,
e.g. Linux. He or she only has to provide an extra de-
pendency list and specifies performance and security
configuration. In addition, patching and upgrading in
GTVP become convenient, because administrators just
need to replace certain components with a patched or
upgraded one in OSCD. For example, when we need to

upgrade certain Lazy Boxes’ OS kernel, instead of
deploying, installing, and rebooting to switch to it on
each Box, we deploy the new kernel in arbitrary mem-
ber, and simply change the dependency configuration
of candidate Boxes. We then inform GTVP to perform
the transition, which simply builds the new environ-
ment, and migrates related dynamic status.

4.3 Security Management

Tradition Platform: Administrators have to take
more consideration for lower layer details, such as the
security connection and the resources sharing among
different machines. As the dimension of machines
grows, the management complexity soon becomes tre-
mendous, which introdoces both manage burden and
security vulnerabilities.

GTVP: Firstly, GTVP provides a uniform vTCB for
administrators, which hides the details of the underly-
ing connection and guarantees that all members con-
nect each other seamlessly and reliably. Secondly,
GTVP makes efforts to alleviate the management bur-
den (for easy to use). Administrator only needs to con-
figure local security information and GTVP synchro-
nizes it with all members automatically. GTVP guaran-
tees the continuous integrity of the entire platform (se-
curity) and dynamic load balancing (efficiency).
Meanwhile, administrators could adjust the various
aspect of GTVP, such as scheduling strategy, memory-
allocating algorithm, migration and attestation strategy,
and the granularity of OS components, achieving max-
imum flexibility.

5. Related Work

Terra [3] achieves the combination of trusted com-

puting and virtualization technology by use of TVMM
that partitions a tamper-resistant hardware platform
into multiple, isolated virtual machines. The software
stack in each VM can be tailored from the hardware
interface up to meet the security requirement of its
applications. TVMM functions to guarantee securities
such as security of root, authentication and trust road.
Unfortunately, Terra only concerns the scenario of
single-platform. We adopted the Open Box and Closed
Box from Terra, and added Lazy Box for our purpose.

Virtual Infrastructure (VI) [12] decouples the entire
software environment from its underlying hardware
infrastructure. It enables the aggregation of multiple
servers, storage infrastructure and networks into shared
pools of resources that can be delivered as needed. It
achieves the uniform management and dynamic load
balancing. However, it emphasizes efficiency rather
than security, while GTVP protects every aspect of the

2345

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:23:15 UTC from IEEE Xplore. Restrictions apply.

platform by security mechanism. Furthermore, the mi-
gration in GTVP can be more efficient, because it only
migration the dynamic parts of applications, which
may be rather small, instead of copying the entire VM
file in VI.

Public resource computing [13] involves an asym-
metric relationship between projects and participants.
Computing distributes among participants. Most partic-
ipants are individual PC owners. BOINC [14] is a typi-
cal public resource-computing platform. It supports
redundant computing, cheat-resistant accounting, and
support for user-configurable application graphic.
However, it has no control over participants, and can-
not prevent malicious behavior. In GTVP, we demon-
strate a virtual layer as middleware for integrity attesta-
tion of platforms and trust establishing.

6. Conclusion and Future Work

GTVP can layer upon more than one hardware plat-

form and guarantee their trust relationship with tech-
niques provided by TCG. It first extends the trust chain
horizontally, then synchronizes information among
these members and extends the trust chain vertically to
applications. Henceforth, administrators can manage
the overall platform in a uniform manner, without con-
cerning complicated underlying details while gaining
security guarantees. GTVP automatically combines
necessary OS Components to form a Lazy Box for the
target application. Thus, it supports rapid application
deployment and management, alleviating administra-
tors burden maximally. GTVP achieves rapid migra-
tion by first assembling the identical Lazy Box at the
target member, and then migrates the dynamic parts,
with migration decision made in accordance with over-
all security policies, and the entire migration process
protected by security protocols. Finally, GTVP’s TCB
was reduced for least privilege. We extracted functio-
nalities from G-TVMM, creating five Control Do-
mains.

For future works, we will first design the five proto-
cols in detail, prove their security, and evaluate their
effectiveness and performance. Then we will device
the algorithms in OS Component Cache, and tech-
niques for locating and loading OS Components. In
addition, we will examine Failure Tolerance tech-
niques.

Acknowledgment

This paper is supported by the Foundation of
Science and Technology of Huawei of China under
Grant No.YJCB2008001TS.

References

[1] R. Goldberg, “Survey of Virtual Machine Research,”
IEEE Computer, 7(6), June 1974.
[2] Trusted Computing Group, Trusted Platform Module
(TPM) specifications, Technical Report,
https://www.trustedcomputinggroup.org/specs/TPM,2006.
[3] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum,
and Dan Boneh, “Terra: a virtual machine-based platform for
trusted computing”, In ACM Symposium on Operating Sys-
tems Principles (ASOSP), 2003, pages 193～206.
[4] Dirk Kuhlmann, Rainer Landfermann, HariGovind V.
Ramasamy, Matthias Schunter, “An Open Trusted Compu-
ting Architecture-Secure Virtual Machines Enabling User-
Defined Policy Enforcement”, Research Report RZ3655,
IBM Research Division, August, 2006.
[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C.
Limpach, I. Pratt and A.Warfield, “Live Migration of Virtual
Machines”, In NSDI, 2005.
[6] T. Garfinkel and M. Rosenblum, “When Virtual is Harder
than Real: Security Challenges in Virtual Machine-based
Computing Environments”, in Proc. 10th Workshop on Hot
Topics in Operating Systems (HotOS-X), May 2005.
[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauery, Ian Pratt, Andrew
Warfield, “Xen and the Art of Virtualization”, in Proceed-
ings of the nineteenth ACM symposium on Operating systems
principles, Bolton Landing, NY, USA, 2003, 164～177.
[8] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson. “Safe hardware access with the Xen
virtual machine monitor”, in 1st Workshop on Operating
System and Architectural Support for the on demand IT In-
fraStructure(OASIS), Oct 2004.
[9] F. Douglis and J. Ousterhout, “Transparent Process Mi-
gration: Design Alternatives and the Sprite Implementation”,
Software - Practice and Experience, August 1991.
[10] Melvin J. Anderson, Micha Moffie, Chris I. Dalton,
“Towards Trustworthy Virtualization Environments: Xen
Library OS Security Service Infrastructure”, Trusted Services
Laboratory, HP Laboratories Bristol, April 30, 2007.
[11] Reiner Sailer, Trent Jaeger, Enriquillo Valdez, Ram´on
C´aceres, Ronald Perez, Stefan Berger John, Linwood Griffin,
Leendert van Doorn, “Building a MAC-Based Security Ar-
chitecture for the Xen Open-Source Hypervisor”, IBM T. J.
Watson Research Center, Hawthorne, NY 10532 USA.
[12] Virtual Infrastructure Overview
http://www.vmware.com/technology/virtual-
infrastructure.html.
[13] J.P.R.B. Walton, D. Frame and D.A. Stainforth, “Visua-
lization for Public-Resource Climate Modeling”, Joint
EUROGRAPHICS - IEEE TCVG Symposium on Visualiza-
tion, 2004.
[14] David P. Anderson, “BOINC: A System for Public-
Resource Computing and Storage”, Space Sciences Labora-
tory University of California at Berkeley.

2346

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:23:15 UTC from IEEE Xplore. Restrictions apply.

