
Application Performance Isolation in Virtualization

Gaurav Somani and Sanjay Chaudhary
Dhirubhai Ambani Institute of Information and Communication Technology,

Gandhinagar, INDIA
{gaurav_somani, sanjay_chaudhary}@daiict.ac.in

Abstract

Modern data centers use virtual machine based
implementation for numerous advantages like resource
isolation, hardware utilization, security and easy
management. Applications are generally hosted on
different virtual machines on a same physical machine.
Virtual machine monitor like Xen is a popular tool to
manage virtual machines by scheduling them to use
resources such as CPU, memory and network.
Performance isolation is the desirable thing in virtual
machine based infrastructure to meet Service Level
Objectives. Many experiments in this area measure the
performance of applications while running the
applications in different domains, which gives an insight
into the problem of isolation. In this paper we run
different kind of benchmark s simultaneously in Xen
environment to evaluate the isolation strategy provided
by Xen. Results are presented and discussed for different
combinations and a case of I/O intensive applications
with low response latency has been presented.

1. Introduction

Virtual machines are the key blocks of utility computing or
on-demand facilities like cloud computing. Modern data
centers host different applications ranging from web
servers, database servers and high performance
computing nodes to simple user desktops. Although the
concept of virtualizing resources is three decades old [1]
but it is gaining popularity after the term on-demand
computing or cloud computing arose. There are types of
virtualization technologies available:

 Full virtualization,
 Para-virtualization and
 OS level virtualization

These techniques differ from each other in their internal
architecture and how they communicate with guest
operating systems. Xen is the open source virtual machine
monitor developed at computer laboratory, University of
Cambridge, UK. It follows para-virtualization methodology
in resource virtualization [2]. Data centers which host
these virtual machines on their physical machines follow

Service Level Agreements (SLAs), which specifies the
service requirements with different constraints and
parameters to be fulfilled by service provider or cloud
provider [3]. These constraints and parameters include
total uptime and downtime, requirement of CPUs, network
bandwidth and disk space. While running more than one
virtual machine on a single physical server, virtual
machine scheduler is responsible for allocating resources
as defined by SLAs. This allocation also includes a most
demanding and inherent property which is referred as
isolation among virtual machines . Isolation is meant for
securing and providing the resources to a virtual machine
which is co-hosted with other virtual machines on a single
physical server. These resources are CPU share, network
share, memory share and disk share to each virtual
machine. Thus isolation property is forbidding a
misbehaving virtual machine to consume other virtual
machine resources and providing fairness according to
their shares.
In this paper we are intended towards checking isolation
using a set of experiments on Xen virtual machine monitor.
These experiments are aimed towards getting a perception
of scheduling granularity and their effects on applications.
Section 2 of this paper discusses the Xen architecture and
scheduling algorithms provided. Section 3 elaborates
experimental setup and their relevance. Section 4
discusses the results and their significance in the isolation
problem. Section 5 discusses related work in research
community and Section 6 concludes and directed towards
future work.

2. Xen Virtual machine monitor

2.1 Architecture

Xen is the virtualization tool for the x86 architecture which
supports paravirtualization. To support full virtualization it
requires virtualization technology enabled processors.
Xen architecture shown in figure 1 elaborates the basic
blocks in it. Xen designates domain-0 which is the host
operating system as isolated driver domain (IDD) to
provide device driver support to guest operating systems.
Thus in Xen architecture the device drivers in host

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $25.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.78

33

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $25.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.78

33

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.78

33

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.78

41

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.78

41

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:03:22 UTC from IEEE Xplore. Restrictions apply.

operating system will serve guest operating systems.
Guest Domain i.e. DomainU can access drivers via
backend drivers provided by Domain0 [2].

 Figure 1 Xen architecture and driver domain

Applications like web servers, database servers or HPC
nodes run on the top of these domains.

2.2 Scheduling

Xen allows users to choose among number of schedulers
available in scheduler set. These schedulers can be
chosen at boot time. Xen has included many schedulers
in its code over time, but presently it supports only two
schedulers, Simple Earliest Deadline First (SEDF) and
Credit Scheduler [4] [5]. In the following section
introduction about these two scheduling strategies is
given.

2.2.1 Simple Earliest Deadline first Scheduler

SEDF scheduler is the extension to classical Earliest
Deadline First (EDF) scheduler. This scheduler provides
weighted CPU sharing in an intuitive way and uses real-
time algorithms to ensure time guarantees. It is a real time
scheduler which operates on the deadlines of the domains.
Applications with least deadline will be scheduled first to
meet their goals on time. Xen operates on SEDF scheduler
with two parameters which are decided by system
administrator i.e. Time Period Pi and Time slice Si. So each
and every runnable domain will run for Si time in a period
of Pi time. So this kind of scheduler will give the soft real
time guarantee to domains. It maintains a per CPU queue
to schedule domains according to their deadlines [4] [5].
The deadline of each domain is calculated by the time at
which the domain’s period is ending. SEDF is a preemptive
scheduler whose fairness 1is decided by the parameters
chosen by user. SEDF can be a good choice for the
application with latency intensive tasks. Domains which

host I/O intensive application require very less CPU time
but that time is critical in such applications.

2.2.2 Credit Scheduler

Credit scheduler is the latest and default built-in scheduler
in Xen [2]. Credit scheduler is a scheduler with
Proportional Share (PS) of CPU allocated to each domain.
Each domain is assigned number of credits to consume in
comparison of other co-hosted domains. The overall CPU
time allocation among all the domains will be done with
respect to their assigned weights. According to those
weights the scheduler assigns number of credits. Over the
time Credit Scheduler has incorporated number
enhancements. Credit scheduler keeps a domain in one of
the three states, UNDER, OVER and BOOST. Domain state
is decided on the basis of the number of credits available
in a domain’s account.
Domain is designated in UNDER state if it has some
credits available to use otherwise it is in OVER state where
its all credits are consumed. The domains with UNDER
state are having higher priority than domains with OVER.
The domains in the UNDER state are run simply on First
Come First Serve basis [5]. If there is no domain with
UNDER state available than the CPU time will be allocated
to a domain with OVER priority. Credits are deducted by
100 from each running domain’s account on every 10 ms.
A Domain will receive maximum 30 ms to run each time it
has been scheduled and if it has enough credits to do so.
Credit scheduler uses a third state BOOST state which is
added to support I/O applications which needs low
response latency. BOOST state is assigned to an IDLE
domain which has received an event in event channel of
Xen. Thus currently running domain with UNDER priority
will be preempted and this domain with BOOST priority
will be scheduled first. It helps in improving the
performance of I/O applications . But this effect will
disappear gradually, if multiple domains are expected to
perform I/O [5]. BOOST application can only preempt the
running domain.

3. Experimental Setup

3.1 Overview

Experiments are designed to evaluate the isolation
provided by the Xen virtual machine monitor. Many
authors had quantified a number of virtualization platforms
with different experiments [5][6][7][8][9]. Our experiments
differ from these findings in following ways.
(1) Isolation studies so far show isolation among same

type of applications on a single physical server. In

3434344242

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:03:22 UTC from IEEE Xplore. Restrictions apply.

addition to the findings of others experiments, our
approach shows the isolation when running different
resource intensive applications simultaneously.

(2) Effect of running an I/O application with varying CPU
intensive workloads has been executed in different
domains using two different schedulers to quantify
the performance of latency driven applications .

 3.2 Benchmarks Tests

Three kinds of benchmarks are chosen to test the
isolation. These tests are inclined to stress three
elementary resources i.e. CPU, network bandwidth and
disk I/O speed. Following are the reasons for doing such
kind of tests:

(1) To characterize the behavior of scheduler
running two non-similar resource intensive
applications.

(2) Application placement: where to place
applications in data center to get maximum
isolation and fairness.

Xentop is used to measure real time information about a
Xen system and per domain CPU consumption on
specified interval. The experiment uses delay of 1 second
to measure the consumption. The overhead incurred due
to this program is negligible and fair towards all
experiments. The three tests are as follows.

(1) ‘CPU’: CPU intensive program is a computation
intensive loop which contains a number of integer and
floating point instructions. This is a simple C program with
these instructions in a long running loop of 108 counts.

(2) ‘NET’: Network intensive Program, Iperf is an open
source measurement tool that can generate UDP or TCP
traffic and measure the network throughput. It is written in
C++. Here we ran our tests for TCP traffic. The guest
domain is running Iperf as a server program and a Test
client is running on a separate machine as Iperf client. The
test script loops for six iterations to run altogether with
other tests. [10]

(3) ‘DISK’: Disk intensive test, Iozone is an open source
disk intensive program which does read, write, reread,
rewrite and other variance of these disk intensive tests.
Our test perform disk read and write for file sizes ranging
from 64 KB to 64 MB with a minimum record size of 64 KB
[11].
These tests were run on a server with the configuration as
given in figure 2. Server is running two guest domains to
start two tests at the same time. The configuration setup
of our test bed is described in table 1.

Processor Architecture Intel Core 2 Duo
Memory 4 GB
Disk 160 GB
Network Connection 100 Mbps
Host OS OpenSuse 11.0 (x86_64)
Guest OSs OpenSuse 11.0 (x86_64)
Xen version and change set Xen 3.2.1- 16881-04-4.2
Cache Size 2048 Bytes
No. of VCPUs to all OSs 2 (with VCPU pinning)
Memory to Guest 1GB
Memory to Host 2GB
Disk (Guest) 8 GB
Disk (Host) 135 GB
Scheduler Credit
Weight in Credit Scheduler Same for all the domains
Client Configuration Intel P4, 1GB, 100 Mbps

Table 1: Configuration setup for experiment set - 1

Figure 2: Configuration of experiment Set - 1

3.2.1 Experiment Set 1

Each time we ran different combinations of these tests on
two different guest domains and measured different
matrices of importance. So the combinations are

(1) CPU and CPU
(2) DISK and DISK
(3) NET and NET
(4) CPU and DISK
(5) CPU and NET
(6) NET and DISK

These tests are designed to run simultaneously, to get an
insight into isolation strategy.

3.2.2. Experiment Set 2

After performing the tests in experiment set 1, we have
designed one more test which will give a better and correct
explanation of Experiment set 2. This test runs on five
domains simultaneously. The designed tests are as under:

3535354343

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:03:22 UTC from IEEE Xplore. Restrictions apply.

(1) ‘CPU1’: CPU intensive program is a CPU intensive
loop which contains a number of integer and floating
point instructions. This is a simple C program with these
instructions in a infinite while() loop

(2) ‘PING’: Ping latency is designed to calculate round
trip time (RTTs).

 Figure 3: Configuration of experiment set - 2

Processor Architecture Intel Core 2 Duo
Memory 4 GB
Disk 160 GB
Network Connection 100 Mbps
Host OS OpenSuse 11.0 (x86_64)
Guest OSs (4) OpenSuse 11.0 (x86_64)
Xen version Xen 3.3.0
Cache Size 2048 Bytes
No. of VCPUs to all OSs 2 (with VCPU pinning)
Memory to Guest 512MB
Memory to Host 2GB
Disk (Guest) 8 GB
Disk (Host) 135 GB
SEDF parameters (all) (P= 10ms and S=1.9 ms)
Weight in Credit Scheduler Same for all the domains
Client Configuration Intel P4, 1GB, 100 Mbps

Table 2: Configuration setup for experiment – 2

The configuration setup is shown in figure 3 and
corresponding parameters in table 2. We ran five domains
simultaneously including domain 0. Each domain will run
tests according to the sequence given in table 3. Domain 1
guest is designated as latency driven guest as it is
running TEST ‘PING’ by replying to PING Echo requests
coming from the test client for the whole test duration.
Main reason behind running this kind of test is to find out
the scheduler behavior when we increase or decrease the
number of computationally intensive domains. Thus it is a
better metric of measuring scheduler behavior when low
response latency application is resided with CPU intensive
tasks [5].
The experiment set 2 is run for total 400 seconds with
making a state transfer of the test in each 50 seconds.

These tests are run with SEDF and Credit scheduler
available in Xen.

Time (s) Domain state
0 Domain 0,1,2,3,4 all idle
50 Domain 2 TEST ‘CPU1’started
100 Domain 3 TEST ‘CPU1’started
150 Domain 4 TEST ‘CPU1’started
200 Domain 0 TEST ‘CPU1’started
250 Domain 2 TEST ‘CPU1’stopped
300 Domain 3 TEST ‘CPU1’stopped
350 Domain 4 TEST ‘CPU1’stopped
400 Domain 0 TEST ‘CPU1’stopped

 Table 3: Experiment set – 2

4. Results

Table 4 shows the total time to complete each test. The
total time to complete the test is the metric which can be
used to see the isolation and fairness. This metric is
chosen to see the effect of running two different tests on a
single machine

Test Time to complete

CPU and CPU

57.646s (Domain 1)
57.849s (Domain 2)

DISK and DISK

84.714s (Domain 1)
93.901s (Domain 2)

NET and NET

65.539s (Domain 1, 46.15 Mbps)
65.721s (Domain 1, 47.98 Mbps)

CPU and DISK

56.904s (Domain 1, running C)
58.512s (Domain 2, running D)

CPU and NET

57.258s (Domain 1, running C)
65.248s (Domain 2, running N)

NET and DISK

65.820s (Domain 1, running N)
51.690s (Domain 2, running D)

 Table 4: Time to complete each test

4.1 CPU and CPU

In this test, both the guest domains are running CPU
intensive test ‘CPU’. The total time taken to complete the
whole loop of 108 by both the domains under
consideration is nearly same. The Credit Scheduler’s
behavior for compute intensive applications is in
proportional share. Xentop output for both the domain’s
CPU share is given in figure 4. Both these tasks are given

3636364444

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:03:22 UTC from IEEE Xplore. Restrictions apply.

same amount of credits each credit allocation interval and
they both run for the same amount of time to complete the
task. Domain 0 consumes very little amount of CPU for
tasks like Xentop for measurement of CPU consumption.
The upper limit of Y-axis in each plot in the paper is 200%,
as there are two processors available.

 Figure 4: CPU usage by domains (CPU and CPU)

4.2 DISK and DISK

In this test both the guest domains are running file system
benchmark, Iozone as a disk intensive program.

 Figure 5: CPU usage by domains (DISK and DISK)

The benchmark is set to give the read and write
performance for different file and block sizes (Figure 5).
Here both the domains are accessing a single physical

disk, thus results into disk resource contention [7]. The
credit allocation for both the domains is same. The BOOST
state is only assigned to a domain when it is in IDLE state;
both the domains are competing to each other for the
resource and results in a longer time to complete the test.

4.3 NET and NET

Network intensive tasks using Iperf are run on both the
guest domains. The Iperf server runs on these guest
domains and two clients are used to send TCP traffic
(Figure 6). The bandwidth supported by network hardware
is divided in both the domains to run the Iperf tests. It can
be extracted from the time to complete whole Iperf test
designed is similar to running the same test with other
kind of resource intensive tests. The spikes seen in plot
are generated after each interval of 10-11 seconds, when
each Iperf test completes . The network driver support
provided by domain0 shows a high increase in its CPU
consumption. Running two Network intensive
applications will cut the network bandwidth share by half
in this case. So both the domains are experiencing half
bandwidth as compare to the bandwidth they have when
running the same test with other test like CPU or NET.

 Figure 6: CPU usage by domains (NET and NET)

4.4 CPU and DISK

This test runs a CPU intensive program co hosted with a
domain running disk intensive benchmark Iozone. The
graph in figure 7 exhibits that disk intensive program
running with CPU takes more time than running same with
test network intensive test (Figure 7). This is due to no
contention of disk resource and less amount of CPU

3737374545

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:03:22 UTC from IEEE Xplore. Restrictions apply.

requirement in disk I/O operation. Clearly Xen’s credit
scheduler proves itself as a proportional share scheduler
in tests where CPU test is available. Experiment 4.5 also
shows the same isolation and fairness.

 Figure 7: CPU usage by domains (CPU and DISK)

4.5 CPU and NET
This experiment reflects the same output of experiment
CPU and DISK.

 Figure 8: CPU usage by domains (CPU and NET)

The time taken by compute intensive test is also almost
same for all experiments. This proves proportional share
resource allocation provided by credit scheduler. Domain0
CPU usage count is all due to network driver management.
The extra overhead which incurred by Xentop tool is
negligible (Figure 8).

4.6 NET and DISK

The time taken by Network intensive test is almost same
throughout all the tests. At first time, it shows clear
isolation between this application and their combination
with other kind of applications (Figure 9). Domain 0
consumes a CPU amount higher than guest domain, which
proves the amount of work done by domain-0 on behalf of
hosted guests. In this experiment, test DISK consumes
least time throughout all the tests which contains test
DISK in combination. This is due to no resource
contention and Credit’s Proportional share property.

 Figure 9: CPU usage by Domains (NET and DISK)

4.7 Experiment Set 2

Experiment set 1 has illustrated the isolation in Xen virtual
machine monitor when similar and different kind of
resource intensive applications ran on a single server. In
Experiment set 2, we illustrate special case where one
simple ping application is evaluated on the bas is of RTT
with CPU intensive domains co hosted.

 Figure 10: Ping latency with credit scheduler

3838384646

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:03:22 UTC from IEEE Xplore. Restrictions apply.

Although ping is not an application to virtualize in a data
center but it will give an insight in to the phenomenon
where the I/O latency applications are run with the CPU
applications. Table 4 has the experiment run illustrated
(Figure 10 and 11).
After each 50 seconds a CPU intensive program is started
in each co hosted domain. Both schedulers available in
Xen were run to see the difference in running the latency
driven applications in conjunction with CPU intensive
applications. In the first interval of 0-50 seconds the
PINGed domain acknowledges ping requests with
RTT~0.300ms. In interval of 50-100s the first domain with a
CPU intensive program started and the RTT values
become very high. As BOOST condition can be applied
when a domain is in UNDER state. After each time when
the whole system is having negative credits the I/O
domain will be having new credits and it will be in UNDER
state. Its credits do not consumed fully because it requires
very less amount of CPU and it will goes into inactive
state. So PING domain remains in UNDER state. In next
interval the other domain with CPU intensive program will
be started. For all the intervals the CPU test is resulted
into high ping latency. On the other hand if we choose
SEDF scheduler in place which gives real time guarantees
can perform better for this special case. But that requires
careful parameter selection for applications. This does not
prove any scheduler better than other. Xen team presently
support credit as default scheduler due to its multi
processor support or load balancing. On other hand SEDF
is a scheduler with real time guarantees and user control
over deciding.

 Figure 11: Ping latency with SEDF scheduler

5. Related work

Quantifying isolation among applications in different
virtualization environment has been studied by

[5][6][7][8][9]. The work done by Jenna et al. has studied
effect of a misbehaving virtual machine on other co
hosted machine by measuring their performance. They
have designed their own set of benchmarks [9]. Ongaro
et al. showed results for I/O applications in mixed
workload with compute intensive programs and proposed
enhancement in Xen credit scheduler [5]. Fabrian et al.
has shown the cache and disc interference to see the
isolation [6]. Gupta et al. proposed a proper accounting
method to improve exact resource allocation and
consumption by different guest domains. They
developed a scheduler enhancement to calculate exact
network share with packet count [8]. Padala et al
compared Xen and OpenVZ for resource consumption
and scalability and other low level metrics like cache
misses and domain-0 consumption [7]. Other than these
studies to improve Xen’ scheduling methodologies
number of approaches has been developed to implement
more application oriented scheduling enhancements [13]
[14]. Network and I/O virtualization have been discussed
in detail by [16] [17]. Menon et al did virtualization
performance measurement in [17] with different micro and
macro benchmarks. Placement and than load balancing
has been seen by Chris Hyser et al. in [21]. They
suggested the approach to balance the domains equally
among all the physical servers in the whole data center
using Simulated Annealing algorithm. Overall the
Isolation depends upon the type of application machine
is running and their resource requirement with time.

6. Conclusion and Future work

This paper discusses the isolation methodology provided
by Xen. Resource contention in terms of disk and network
bandwidth is the major consideration for finding a place
for a virtual machine to physical host. Xen in many domain
environments provide good isolation when running high
throughput and non-real time applications with credit
scheduler but it becomes difficult to predict the
performance and time guarantees when running soft real
time applications on it. SEDF has shown relatively good
performance than credit scheduler. SEDF requires effective
deadline setting and it may have more context switches
with smaller slices. In conclusion, high level matrices like
time to complete a benchmark test is taken into account
while measuring the performance, but more precise and
lower level matrices are needed to evaluate s cheduler
traces for each kind of applications. Work can be
continued in the direction while measuring more precise
characteristics in Xen environment. It helps in
understanding scheduler behavior for different kind of

3939394747

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:03:22 UTC from IEEE Xplore. Restrictions apply.

load they run and their behavior on placement of these
applications. Application placement problem is still in its
initial phase, it can be seen while running different real
time and live benchmarks like for web servers and
multimedia applications [19]. Choosing correct parameters
and configuring a scheduler is not a trivial task with
complex Service level Objectives (SLO). Clear mapping of
SLO parameters and scheduler parameter is needed for
isolation.

7. Acknowledgement

We acknowledge the comments we received on different
topics related to Xen on xen-devel list [20]. We thank
Emmanuel Ackaouy, George Dunlap and Zhiyuan Shao for
their comments on the things related to experiments.

8. References

[1] Popek, G. J. & Goldberg, R. P.
Formal requirements for virtualizable third generation
architectures Communications of ACM,1974.
 [2] Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris,
T.; Ho, A.; Neugebauer, R.; Pratt, I. & Warfield, A. Xen
and the art of virtualization SOSP '03: Proceedings of the
nineteenth ACM symposium on Operating systems
principles, ACM, 2003, 164-177.
[3] Chen, Y.; Iyer, S.; Liu, X.; Milojicic, D. & Sahai, A.
Translating Service Level Objectives to lower level
policies for multi-tier services Cluster Computing, Kluwer
Academic Publishers, 2008, 11, 299-311.
 [4] Cherkasova, L.; Gupta, D. & Vahdat, A. Comparison of
the three CPU schedulers in Xen, SIGMETRICS Perform.
Eval. Rev., ACM, 2007, 35, 42-51.
[5] Ongaro, D.; Cox, A. L. & Rixner, S. Gregg, D.; dve, V. S.
& Bershad, B. N. (ed.), Scheduling I/O in virtual machine
monitors, VEE, ACM, 2008, 1-10.
[6] Fabrian et al., Virtualization in enterprise, Intel
technology Journal, Volume 10, Issue 3, 2006, 227- 242
[7] Pradeep Padala, Xiaoyun Zhu, Z. W. S. S. K. G. S.
Performance Evaluation of Virtualization Technologies for
Server Consolidation Enterprise Systems and Software
Laboratory, HP Laboratories, Palo Alto., April 11, 2007.
[8] Gupta, D.; Cherkasova, L.; Gardner, R. & Vahdat, A.
Enforcing performance isolation across virtual machines in
Xen Middleware '06: Proceedings of the
ACM/IFIP/USENIX 2006 International Conference on
Middleware, Springer-Verlag New York, Inc., 2006, 342-
362.

[9] Matthews, J. N.; Hu, W.; Hapuarachchi, M.; Deshane,
T.; Dimatos, D.; Hamilton, G.; McCabe, M. & Owens, J.
Quantifying the performance isolation properties of
virtualization systems, ExpCS '07: Proceedings of the
2007 workshop on Experimental computer science, ACM,
2007.
[10] Iperf: Network Throughput measurement tool,
http://sourceforge.net/projects/iperf, Accessed April,
2009.
[11] Iozone, File System benchmark,
http://www.iozone.org, Accessed March 2009.
[12] Schanzenbach, D. & Casanova, H. Accuracy and
Responsiveness of CPU Sharing Using Xen’s Cap Values
Computer and Information Sciences Dept., University of
Hawai at manoa, 2008.
[13] Weng, C.; Wang, Z.; Li, M. & Lu, X. The hybrid
scheduling framework for virtual machine systems
VEE '09: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual
execution environments, ACM, 2009, 111-120.
 [14] Kim, H.; Lim, H.; Jeong, J.; Jo, H. & Lee, J.
Task-aware virtual machine scheduling for I/O
performance. VEE '09: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual
execution environments, ACM, 2009, 101-110.
 [16]Apparao, P.; Makineni, S. & Newell, D.
Characterization of network processing overheads in Xen
VTDC '06: Proceedings of the 2nd International
Workshop on Virtualization Technology in Distributed
Computing, IEEE Computer Society, 2006, 2.
[17] Menon, A.; Santos, J. R.; Turner, Y.; Janakiraman, G.
J. & Zwaenepoel, W. Diagnosing performance overheads
in the xen virtual machine environment VEE '05:
Proceedings of the 1st ACM/USENIX international
conference on Virtual execution environments, ACM,
2005, 13-23.
[18] Cherkasova, L. & Gardner, R.Measuring CPU
overhead for I/O processing in the Xen virtual machine
monitor ATEC '05: Proceedings of the annual conference
on USENIX Annual Technical Conference, USENIX
Association, 2005, 24-24.
[19] Pradeep Padala, Kai-Yuan Hou, K. G. S. X. Z. M. U. Z.
W., Automated Control of Multiple Virtualized Resources ,
HP Laboratories, 2008.
[20] Xen-developer list, http://lists.xensource.com/
archives/html/xen-devel/2009-05/msg00093.html.
[21] Chris Hyser, Bret McKee, R. G. B. J. W. Autonomic
Virtual Machine Placement in the Data Center HP
Laboratories, February 26, 2008.

4040404848

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:03:22 UTC from IEEE Xplore. Restrictions apply.

