
Automatic Performance Tuning for the Virtualized Cluster System

Chuliang Weng, Minglu Li, Zhigang Wang, and Xinda Lu
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

{clweng, mlli, felixwang, xdlu}@sjtu.edu.cn

Abstract

System virtualization can aggregate the functionality of
multiple standalone computer systems into a single hardware
computer. It is significant to virtualize the computing nodes
with multi-core processors in the cluster system, in order to
promote the usage of the hardware while decrease the cost of
the power. In the virtualized cluster system, multiple virtual
machines are running on a computing node. However, it is a
challenging issue to automatically balance the workload in
virtual machines on each physical computing node, which is
different from the traditional cluster system’s load balance.
In this paper, we propose a management framework for
the virtualized cluster system, and present an automatic
performance tuning strategy to balance the workload in
the virtualized cluster system. We implement a working
prototype of the management framework (VEMan) based on
Xen, and test the performance of the tuning strategy on a
virtualized heterogeneous cluster system. The experimental
result indicates that the management framework and tuning
strategy are feasible to improve the performance of the
virtualized cluster system.

1. Introduction

With the development of the computer technology, the
multi-core processor gradually becomes popular in the com-
puter system. Virtualization technology [1][2] is a good
way to aggregate the functionality of multiple standalone
computer systems into a single hardware computer, in order
to promote the usage of the multi-core processor. Differing
from the traditional system software stack, a virtual machine
monitor (VMM) is inserted between the operating system
level and the hardware level in the virtualized system.
In the virtual machine system, multiple virtual machines
(VMs) with a specified individual instance of the operat-
ing system are running simultaneously on the top of the
VMM. Currently, examples of system virtualization include
VMWare [3], Xen [4], Denali [5], etc.

Virtualization technology can be applied to the cluster
computing system in order to improve the usage of com-
puting nodes with multi-core processors. Multiple VMs
are running on a computing node, which are treated as

standalone virtual computing nodes. Besides the potential
performance benefit, virtualization makes it easier to migrate
workloads between computing nodes in the cluster comput-
ing system [6][7]. When a VM being migrated, its entire OS
and all of its applications are transferred as one unit from one
computing node to the other computing node. This method
can avoid many of the difficulties faced by process-level
migration approaches. In particular, the interface between a
guest operating system and the VMM is related narrow so
that it is easy to avoid the problem of residual dependencies
[8]. When a computing node is overloaded, a VM on it will
be chosen and be migrated to the other underloaded comput-
ing node in the cluster system conveniently and seamlessly.
The combination of virtualization and migration significantly
improves manageability for the cluster computing system.

Virtualization may potentially bring benefit to the cluster
system in the aspect of performance and management as
discussed above. The challenging issue is how to effectively
manage the virtualized cluster system based on virtualization
technology for achieving the high performance. The motiva-
tion of this paper is to achieve the goal of the automatic per-
formance tuning for the virtualized cluster system. The main
contribution of this paper includes as follows. We propose
a management framework for the virtualized cluster system
to manage all physical computing nodes and VMs on these
nodes. Based on the framework, we present an automatic
performance tuning strategy to balance the workload in the
virtualized cluster system, which can not only balance the
resource allocation between VMs in a physical node, also
balance the workload between different nodes in the cluster
system. In this paper, we assume that applications running
on VMs are the web servers.

The rest of this paper is organized as follows. The
next section proposes a management framework for the
virtualized cluster system, and discusses its implementation
(VEMan). Section 3 presents a two-level performance tuning
strategy for the proposed management framework. Section
4 presents the local tuning algorithm and the global tuning
algorithm for the two-level performance tuning strategy.
Section 5 discusses the experimental results. Section 6
provides a brief overview to the related works, and Section
7 concludes the paper.

2009 29th IEEE International Conference on Distributed Computing Systems

1063-6927/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDCS.2009.45

183

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:01:54 UTC from IEEE Xplore. Restrictions apply.

2. Management Framework

In this section, we will propose a management framework
for the virtualized cluster system, and introduce its imple-
mentation (VEMan).

2.1. Virtualization

As depicted in Figure 1, it is a typical system level virtual-
ization architecture [2]. Virtualization provides an additional
layer (VMM) between the running operating system and
the underlying hardware. The VMM manages the hardware
resources and exports them to the operating systems running
on them. As a result, the VMM is in full control of allocating
the physical resources to the guest operating system. For
example, it is the VMM that maps the virtual CPUs (VCPUs)
of VMs to the physical cores.

Computing Node Hardware

Virtual Machine Monitor (VMM)

Virtual Machine (VM1)

Operating System

Applications

Virtual Machine (VM2)

Operating System

Applications

Figure 1. System virtualization architecture

Usually, there are multiple VMs on a single physical
computing node in the cluster system. There is a manager
VM called as VM0, which is the interface to the system
administrator, and is responsible for creating, destroying,
modifying the User VMs, which are called as VMUs and
are the tuning objects.

2.2. System framework

As depicted in Figure 2, each computing node is virtual-
ized and multiple VMs are running on computing nodes. In
each computing node, there are two kinds of components.
The NodeAgent running in VM0 is responsible for managing
the local resources in the computing node and providing
the interface to the management node, so that the manage-
ment node can remotely control the computing node. The
VMAgent running in each VMU is responsible for gathering
the system information on the specified VMU, which is
used by the NodeAgent to balance the resource allocation
among VMs on the computing node. The third component
is ClusterAgent with Graphic User Interface (GUI), which
manages the multiple computing nodes in the cluster system
with the help of remote NodeAgents.

Specifically, according to the workload information pro-
vided by VMAgents, the NodeAgent dynamically allocates
the CPU time, the memory capacity, and the network

bandwidth among multiple VMs on the computing node,
which is implemented by invoking the system call provided
by the VMM. The ClusterAgent dynamically balances the
workload among computing nodes by migrating VMUs
from the overloaded computing nodes to the underloaded
computing nodes.

Computing Node 1

Virtual Machine Monitor (VMM)

Virtual Machine (VM0)

Operating System

NodeAgent

Virtual Machine (VMU)

Operating System

ApplicationsVMAgent

Computing Node n

Virtual Machine Monitor (VMM)

Virtual Machine (VM0)

Operating System

NodeAgent

Virtual Machine (VMU)

Operating System

ApplicationsVMAgent

Management Node

ClusterAgent

Operating System

Figure 2. Management framework

The VMAgent running on each VM is adopted for
avoiding the problem of the semantic gap [9]. That is, the
VMM is full control of allocating local resources while
it is the lack of knowledge of the higher-level operating
system and its applications. With the VMAgent, the running
information about the VM can be obtained intuitively and
comprehensively.

2.3. Implementation

We have implemented a working prototype of the pro-
posed management framework, which is called as VEMan
(Virtual Environment Manager). In this subsection, we will
discuss the implementation briefly.

Xen [4] is adopted as the VMM in VEMan, and Linux
is the guest operating system. We choose Linux and Xen
because of their broad acceptance and the availability of
their open-source codes.

Global management. The design of the ClusterAgent
emphasizes convenience and effectiveness. The ClusterA-
gent’s GUI lists information about the computing nodes
in the cluster and the VMs on each computing node. The
information includes the running information such as the
status (running, booted or paused), the usage of CPU and
memory, etc, and also includes the hardware information
such as the number of CPUs, the capacity of memory, the
MAC and IP address of the virtual network. Additionally,
some hardware configurations can also be adjusted on the
fly. In order to make the ClusterAgent platform-independent,
it is implemented in language Python while the GUI is
constructed with PyGTK [10].

184

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:01:54 UTC from IEEE Xplore. Restrictions apply.

In order to transfer messages between the ClusterAgent
and NodeAgent, we choose a lightweight but powerful re-
mote procedure calls (RPC) protocol XML-RPC as the com-
munication method. XML-RPC works in the client/server
mode. In our implementation, the client is the ClusterA-
gent while the server is the NodeAgent. We have defined
and implemented 33 XML-RPC interfaces provided by the
NodeAgent to the ClusterAgent. The number will increase
in the future if necessary.

For balancing workloads on the computing nodes,
the ClusterAgent will determine the migrated VM
(see section 4.2) and invoke the XML-RPC interface
virt_vm_migrate() to accomplish the migration,
which parameters include the ID of the migrated VM, its
destination computing node, and the transfer port.

System Monitoring. The NodeAgent runs as a daemon in
VM0 on each computing node. It is also responsible for gath-
ering the usage information of CPU, memory, and network
for each VM on the same computing node. Currently, Xen
provides a monitoring application called as XenMon [11] to
gather the CPU usage information of VMs. We modified
it and integrated it into VEMan, so that the NodeAgent
can obtain the CPU usage information of each VM on the
computing node. Based on the memory capacity allocated to
a VM and the page swap rate in the VM, the NodeAgent may
possibly evaluate the memory usage of the VM. Moreover,
the virtual firewall-router (VFR) interface is adopted in
Xen, and each VM attaches its virtual network interface to
the VRF. Therefore, the NodeAgent running in VM0 can
monitor the number of bytes transferred on each interface
by using /proc/net/dev in the system, in order to obtain
the network usage information of VMs.

Application monitoring. The VMAgent runs as a daemon
in each VMU. It is responsible for gathering the information
about applications running on the VM. In this paper, the
application on a VMU is the web server. The VMAgent
counts the access request amount and the actual access
response amount based on the history log. According to
the information, the VMAgent estimates the access request
amount as the workload on this VM in the near future
(see section 4.1). As the VMU is not fixed in a computing
node, the estimated workload information of a VM with its
MAC address will be sent by multicasting to the NodeAgent,
which is on the same computing node.

Local management. The NodeAgent adjusts the CPU and
memory allocation among VMs by the xm tool provided
by Xen (specifically, xm sched-credit). However, the
network bandwidth control is not provided by the open-
source edition of Xen, this function can be implemented
by invoking the Linux kernel interfaces in the VM.

3. Performance Tuning Strategy

This section presents a performance tuning strategy for
the virtualized cluster system. Specifics regarding the tuning
algorithms are detailed in the next section.

As depicted in Figure 3, we adopt a two-level tuning
strategy in the virtualized cluster system. After the system
initialization, the number of VMs (specifically they are
VMUs, hereafter the same) created on each computing node
may be customized by the system administrator or be in
proportion to its physical computing power.

System Initialization

VMs Migration for Balancing Workloads on
Computing Nodes

Resource Allocation for VMs on
Each Computing Node

T1

T2

Figure 3. Performance tuning

The local tuning event occurs in the range of an individual
computing node. The application in each VM is a web
server, and the workload of a VM can be measured by
the number of access requests of the web server. Then the
difference between the request amount and the throughput
can be used to determine whether the VM is underloaded or
overloaded. It is the NodeAgent that performs the resource
allocation operation in a computing node. According to the
workload information of each VM on the computing node,
the NodeAgent will calculate the weight of each VM, and
assign the share of the CPU time and the other physical
resources to VMs in proportion to their weights.

The ClusterAgent performs the tuning operation at the
global tuning event in the range of the cluster system. Based
on the usage percent information of the physical resources in
a computing node, the ClusterAgent determines whether the
computing node is overloaded or underloaded. According to
this workload information, the ClusterAgent will balance the
workloads of computing nodes by migrating the VM from an
overloaded node to an underloaded node. For avoiding too
frequent migration and reducing the migration overhead, we
constrain that the number of the migrated VMs is no more
than one at each global tuning event.

The interval of the global tuning event is denoted by T1,
and the interval of the local tuning event is denoted by T2.
As the global tuning overhead is larger than the local tuning
overhead, we set that T1 is an integral multiple of T2.

It is noted that the resource allocation among VMs deter-
mined by the NodeAgent should be based on the number of

185

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:01:54 UTC from IEEE Xplore. Restrictions apply.

access requests in the next interval in the ideal condition.
However, the access request arrived in the future is not
known in advance. The ClusterAgent also encounters the
similar problem when determining the balancing operation.
Therefore, we will present the specific tuning algorithm
based on the proposed tuning strategy in the following
section.

4. Tuning Algorithm

In this section, we will describe the tuning algorithms for
the ClusterAgent and the NodeAgent, respectively.

The cluster system is a heterogeneous system, and each
node is treated as a symmetric multiprocessing (SMP) sys-
tem, although it is a multi-core system. The number of the
computing nodes is denoted by N . The number of physical
cores in node i is denoted by C[i], and the CPU speed is
denoted by S[i], and the memory capacity is denoted by
RAM [i], and the network bandwidth is denoted by NB[i].

4.1. Local tuning algorithm

When a VM is dedicated to running a web server, for
a better workload balance, the number of access requests
arrived in the VM in the next T2 will determine the weight of
the VM. However, this information is not known in advance.

The access request for a web server has the property
of locality and periodicity [12][13]. For estimating the
near future workload of a web server, then we adapt a
typical learning algorithm to demonstrate the significance
of the local tuning. Considering the characteristic of the
web access, the modified Roth-Erev learning algorithm is
proposed to estimate the amount of access requests arrived in
a VM in the next interval. The original version of the Roth-
Erev reinforcement-learning algorithm is described in [14],
and the modified Roth-Erev algorithm is calibrated with four
parameters, a scaling parameter s(1), a recency parameter r,
an experimentation parameter e, and a parameter K denoting
the number of possible access request amounts.

The modified Roth-Erev algorithm (Algorithm 1) is exe-
cuted by the VMAgent on each VM, and it is summarized as
follows. At the beginning, the VMAgent on VM j assigns
an equal propensity qjk(1) = s(1)X/K for each k of all
possible request amounts, which total is K , and X is the
statistical average value of request amounts in a web server.
In addition, an equal choice probability pjk(1) = 1/K is
assigned to each of its feasible request amount k. At the first
local tuning event, the VMAgent probabilistically selects a
feasible request amount k′ as the request amount estimation
in the following interval. At the next local tuning event, the
VMAgent on VM j updates the corresponding parameters
according to its estimation accuracy for the last interval,
which is determined by the difference between the estimated
request amount and the actual request amount.

Algorithm 1 The local tuning algorithm
1: At local tuning event i + 1
2: for VM j on a computing node do
3: for each propensity k do
4: qjk(i + 1)← (1− r)qjk(i) + E(j, k, k′, i, K, e);
5: end for
6: for each propensity k do

7: pjk(i + 1)← qjk(i + 1)

/
K∑

m=1

qjm(i + 1);

8: end for
9: pjk′(i + 1) = max

k
pjk(i + 1).

10: the request amount in the next interval is estimated as k′.
11: ERA[j]← k′.
12: end for
13: for VM j on a computing node do

14: W [j]← ERA[j]

/∑
l

ERA[l];

15: end for

A(j, k′, i) is the estimation accuracy for VM j at the local
tuning event i, and its estimation of the request amount is
k′. ERA[j] is the estimated request amount arrived in the
next interval. And E is an updating function reflecting the
experience gained from the past estimation activity, which
takes the form:

E(j, k, k′, i, K, e) =

{
A(j, k′, i)(1− e), k = k′

qjk(i) e
K−1

, k �= k′ (1)

Consequently, the NodeAgent will adjust the allocation of
the physical CPU, memory, and bandwidth to VM j on the
computing node according to the new weight W [j].

4.2. Global tuning algorithm

At the global tuning event, we adopt the concept of
cost to select a VM to be migrated from one node to the
other node, for balancing the workloads among nodes in
the cluster system. The key of the method is to convert
the usage of different kinds of resources, such as CPU,
memory and bandwidth into a homogeneous cost. We adopt
an exponential function for the cost of a VM with a given
load [15]. The merit of the exponential function is that
the cost of migrating a VM is not only influenced by
the workload of the VM itself, but also influenced by the
workload of the computing node.

For VM j on node i, the CPU usage percent in the last T1

is denoted by CPUu[i][j], and specifically CPUu[i][j] =∑
k TV CPU [i][j][k]/(T1 × C[i]), where TV CPU [i][j][k] de-

notes the time length of VCPU k of VM j running on the
physical CPU in node i in the last T1. The average used
memory capacity of VM j in the last T1 is denoted by
RAMu[i][j], and the average used network bandwidth is
denoted by NBu[i][j].

The cost of VM j running on node i consists of the
CPU cost costc[i][j], the memory cost costm[i][j], and the

186

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:01:54 UTC from IEEE Xplore. Restrictions apply.

network cost costn[i][j], and they are defined as follows,
respectively.

costc[i][j] = N

∑
k

CPUu[i][k]

−N

∑
k,k �=j

CPUu[i][k]

(2)

costm[i][j] = N

∑
k

RAMu[i][k]

RAM[i] −N

∑
k,k �=j

RAMu[i][k]

RAM[i] (3)

costn[i][j] = N

∑
k

NBu[i][k]

NB[i] −N

∑
k,k �=j

NBu[i][k]

NB[i] (4)

Then, the cost of VM j running on node i is

cost[i][j] = costc[i][j] + costm[i][j] + costn[i][j] (5)

After VM j on node i is migrated to node i′, its memory
cost newcm and network cost newcn can be calculated with
above equations, while its CPU cost is calculated as follows
because the CPU speed of nodes may be different from each
other.

newcc[i
′][j] = (N

S[i]
S[i′] CPUu[i][j]+

∑
k

CPUu[i′][k]

−N

∑
k

CPUu[i′][k]

)
(6)

Then we have the new cost of VM j running on node i′

after it is migrated from node i.

newcost[i′][j] = newcc[i
′][j]+newcm [i′][j]+newcn [i′][j] (7)

At the global tuning event, a VM may be chosen to
be migrated to balance the workloads on computing nodes
in the cluster system. The goal is to reduce the workload
unbalance among these computing nodes. The global tuning
algorithm is shown as Algorithm 2, where δ is the migration
threshold. According to the global tuning algorithm, at most
one VM may be chosen to be migrated at each global tuning
event.

Then, we analyze the global tuning algorithm theoretically
as follows.

Lemma 1. Minimizing the total cost of all of the comput-
ing nodes in the cluster is an optimal solution for reducing
the workload unbalance.

Proof. For simplifying the process of proof, only the
CPU cost is considered, and the computing node is homo-
geneous. Then the cost of a computing node is cost[i][j] =

N

∑
k

CPUu[i][k]

, and the total cost of all of the computing

nodes is costall =
∑
i

N

∑
k

CPUu[i][k]

. At the tuning event,

the workloads of VMs are fixed, then we have loadall =∑
i

∑
k

CPUu[i][k], which is also a fixed value. According

to the property of the average inequality [16], when the

Algorithm 2 The global tuning algorithm
1: for each global tuning event do
2: The ClusterAgent getting all information;
3: max cost diff ← 0;
4: {fromNode, toNode, peakV M} ← 0;
5: for each node i do
6: for each VM j on node i do
7: current cost← cost[i][j];
8: for each node i′, i′ �= i do
9: target cost← new cost[i′][j];

10: cost diff ← current cost− target cost;
11: if cost diff > max cost diff then
12: max cost diff ← cost diff ;
13: fromNode← i, toNode← i′;
14: peakV M ← j;
15: end if
16: end for
17: end for
18: end for
19: if max cost diff > δ then
20: Migrating VM peakV M from node fromNode to node

toNode;
21: end if
22: end for

workload on each computing node is loadall/N , the total
cost costall has the minimal value. In this condition each
computing node has the equal workload, so the cluster
system has an optimal workload balance. As it is a sufficient
and necessary condition, therefore minimizing the total cost
of all of the computing nodes in the cluster is an optimal
solution for reducing the workload unbalance. The conclu-
sion can be easily extended to the heterogeneous situation
with more resources’ costs considered. ❚

Theorem 1. Algorithm 2 is an optimal solution for
balancing the workload under the condition that at most one
VM is migrated at each global tuning event.

Proof. With Algorithm 2, the chosen VM peakV M has
the maximal cost difference max cost diff among all
VMs in the cluster. That is to say, the total cost has the
maximal decrease after VM peakV M is migrated from its
current computing node fromNode to the new computing
node toNode. Therefore, after this migration, the total cost
is the minimal value among all possible migrations at this
global tuning event, under the condition that at most one
VM is migrated. According to Lemma 1, the migration de-
termined by Algorithm 2 is an optimal solution for reducing
the workload unbalance. ❚

According to Theorem 1, we find that the presented
global tuning algorithm is an effective method to balance the
workloads in the cluster when at most one VM is migrated
at each global tuning event. As the overhead of migration
is not unneglectable, we argue that this solution has a better
tradeoff among the cost and the benefit of the VM migration
in the cluster.

187

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:01:54 UTC from IEEE Xplore. Restrictions apply.

5. Performance Evaluation

In this section, we perform some experiments on the
virtualized cluster system with workloads.

5.1. Experimental methodology

For studying comprehensively the performance, we firstly
test the total throughput of web servers in the virtualized
cluster, which is a performance metric for the global work-
load balance. We also test the throughput of the web server
in a single VM, which is a performance metric for the local
workload balance.

Workload. To evaluate system performance improvement
introduced by the automatic tuning, we perform a series of
experiments. The workload in each VM (VMU) is a web
server, which provides the web access service. Each VM
runs Apache 2.2.3 and PHP 5.2.0, serving dynamic PHP
web pages. The PHP scripts are designed to be a mixed
physical resources (CPU, memory, and network) intensive.
We develop a web client, which will generate continuous
web access requests for each VM based on httperf [17].

Experimental system. All experiments are executed on a
heterogenous cluster connected over gigabit ethernet, which
includes 3 Dell servers with dual quad-core Xeon X5310
CPUs and 2GB of RAM, and 3 Dell servers with one dual-
core E6550 CPU and 1GB of RAM. Each computing node
runs Xen 3.2.1, and all VMs run the Ubuntu 8.04 Linux dis-
tribution with the Linux 2.6.18.8 kernel. For implementing
the VM migration, iSCSI and NFS (Network File System)
are used in the cluster, and a server with dual quad-core
CPUs acts as the iSCSI target, and the others act as iSCSI
initiators. The iSCSI target is implemented by IET (iSCSI
Enterprise Target), and the iSCSI initiator is implemented
by open-iSCSI 2.0-870.

5.2. Experimental result

In the experiment, we mainly consider the four scenarios,
and there are 18 VMs (VMUs) in the virtualized cluster.
The first scenario is that all VMs are equally distributed
among all nodes in the cluster, and each VM is deployed
and fixed on a computing node all the time. As any automatic
tuning is not adopted in this scenario, we call the scenario as
NonTuning. The second scenario is that only the automatic
global tuning is adopted in the cluster system, and the
ClusterAgent automatically migrates VMs according to the
global tuning algorithm (Algorithm 2), and we call this
scenario as GlobalTuning, where the global tuning event
interval T1 = 120s. The third scenario is that only the
automatic local tuning is adopted in the cluster system,
and each NodeAgent automatically adjusts the resource
allocation among VMs on its computing node according to
the local tuning algorithm (Algorithm 1), and we call this

scenario as LocalTuning, where the local tuning event
interval T2 = 20s. The last scenario is that the automatic
global and local tunings are simultaneously adopted in the
cluster system, and we call this scenario as G<uning.

Firstly, we test the total throughput of 18 web servers
in the cluster system when the total of access requests
is increasing in the fixed time length (40 minutes). For
testing the influence of the unbalanced workload on the
performance, the rate of access requests fluctuates with the
time, and initially the average rate of access requests is
relatively higher for VMs on nodes with the slower speed.
The experimental result is shown as Figure 4.

With the total of access requests increases in a fixed
period, the workload of the cluster becomes heavier. The
physical resources are less idle in the scenario with the
better workload balance, as a result, the total of the access
responses (throughput) will be larger if the system has a
better workload balance. According to Figure 4, the perfor-
mance of G<uning is the best among all four scenar-
ios, while the performance of NonTuning is the worst.
When the workload is not very heavy, LocalTuning
outperforms GlobalTuning, because the overhead of
the local resource reallocation is relatively less. Other-
wise, GlobalTuning outperforms LocalTuning, be-
cause GlobalTuning balances workloads in the global
range of the cluster system, while LocalTuning performs
only in the local range of individual computing nodes.

20000 40000 60000 80000 100000 120000

10000

20000

30000

40000

50000

60000

70000

80000

90000

T
h

e
 t

o
ta

l
o

f
re

s
p

o
n

e
s

The total of connection requests

 NonTuning

 GlobalTuning

 LocalTuning

 G<uning

Figure 4. The total throughput

Now we study the performance from the aspect of a
single computing node. We monitor the CPU usage percent
of a fixed computing node in the same period in the four
scenarios, which lasts for 40 minutes. The experimental
result is shown in Figure 5, where the value of a point
is the average value of the CPU usage in a minute. The
CPU usage percent fluctuates acutely when there is no
automatic tuning in the system. The automatic tuning may
smooth the fluctuation of the resource usage to some degree,
which is caused by the application in the system. This result
is beneficial to improve the quality of service (QoS) of
applications such as web servers running in the system.

Then we turn our attention to the performance of an

188

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:01:54 UTC from IEEE Xplore. Restrictions apply.

0 10 20 30 40

0.5

0.6

0.7

0.8

0.9

1.0

T
h

e
 C

P
U

 u
s
a

g
e

Time (min)

 NonTuning

 GlobalTuning

 LocalTuning

 G<uning

Figure 5. The CPU usage of a computing node

individual VM in the system. Therefore, we also record
the number of access requests and the throughput of a
fixed VM in the cluster in the four scenarios, when we
perform the above experiments to test the total throughput
of the cluster. The rate of response is the value of the
throughput divided by the request amount, and is adopted to
evaluate the performance of a single VM. It is depicted as
Figure 6. As the automatic tuning can dynamically adjust the
computing capacity of a VM according to the information
of the realtime workload, the rate of response is relatively
higher in the tuning scenarios. Especially, G<uning has
the best rate of response for the specified VM. Moreover,
GlobalTuning outperforms LocalTuning when the
system’s workload is relatively heavy.

20000 40000 60000 80000 100000 120000

0.0

0.2

0.4

0.6

0.8

1.0

T
h

e
 r

a
te

 o
f

re
s
p

o
n

s
e

The total of connection requests

 NonTuning

 GlobalTuning

 LocalTuning

 G<uning

Figure 6. The throughput of a VM

In summary, G<uning has the best performance
among the four scenarios, not only from the aspect of
the whole performance, but also from the aspect of the
local performance. Also it is helpful to improve the QoS
of applications running in the virtualized cluster system.
It is noted that GlobalTuning can also be beneficial to
improve the performance of the system, especially when the
workload of the system is relatively heavy. As a result, it
is significant to perform the global workload balance by the
VM migration with the global tuning algorithm, even if there
is no enough information about applications to perform the

local tuning.

6. Related Work

The performance tuning issue in the virtualized cluster
had close relationship with the task scheduling and process
migration in the traditional cluster.

The cluster system can offer high performance, high
throughput and high availability at a relatively low cost
for the corresponding application scenario. The Condor
system [18] is a high throughput cluster system, who aims
to maximize the utilization of workstations with the usage of
the job migration. Condor adopts the checkpoint technology
to save enough information for the migrated job before
transferring it to another workstation. Along with Condor,
there are a wide variety of powerful batch execution systems
such as LoadLeveler (a descendant of Condor), LSF and
PBS. Currently, an interesting project is Tashi [19], which
is a cluster management system based on virtualization for
the emerging cloud computing.

For improving the performance of the virtualized cluster
system, VMware’s Distributed Resource Scheduler (DRS)
[20] uses migration to perform automated load balancing
in response to CPU and memory pressure. A userspace
application is used to monitor memory usage similar to
VEMan’s VMAgent, but unlike VEMan, it cannot utilize
application logs to adjust the resource allocation among
VMs on the computing node. In the other interesting re-
lated work [21], the black-box and gray-box strategies are
presented in Sandpiper. These strategies are used to detect
hotspot, that is, the usage of one resource exceeds a thresh-
old. Differing from estimating a single hotspot, our tuning
strategy implemented the global and local workload balance
in the virtualized cluster. For the improving the MapReduce
performance in the virtualized heterogeneous environments,
the LATE scheduling algorithm [22] is presented, and it
can improve the response times of Hadoop (an open-source
implementation of MapReduce). Another interesting work
is STEP [23], where an effective way is presented and
implemented to improve the utilization of storage server
resources through prefetching in storage servers for clients.

7. Conclusion

Virtualization provides a potential method to effectively
manage the multi-core cluster system and promote its usage
performance. Automatic performance tuning may provide
significant benefits in the virtualized cluster system by
adjusting the physical resource allocation among VMs and
enabling the VM migration to achieve workload balance.

In this paper, we propose a management framework for
the virtualized cluster system, in which the three types of
modules: ClusterAgent, NodeAgent, VMAgent are used to
monitor the running status of the virtualized system, and

189

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:01:54 UTC from IEEE Xplore. Restrictions apply.

determine the resource allocation and the VM migration.
For guiding the automatic performance tuning, we present
a two-level tuning strategy with the two corresponding
algorithms. We have implemented a working prototype of
the management framework as VEMan based on the VMM
Xen. Experiments indicate that the automatic performance
tuning is a viable technique for reducing the workload
unbalance between VMs and between computing nodes in
the cluster system.

Although the proposed automatic performance tuning
framework and strategy discussed in this paper may improve
the virtualized cluster system to some degree, there is still
much room for the further improvement. Specifically, the
local tuning algorithm is focused on the application of web
servers, although there are a variety of applications in the
cluster system. In the future, we will optimize further the
tuning method for the web server application while find
the tuning method for more types of applications such as
the high performance computing application in the cluster
system.

Acknowledgment

This work was supported partly by National Key Ba-
sic Research and Development Plan (973 Plan) of China
(No. 2007CB310900), and Huawei Science and Technology
Foundation, and National Natural Science Foundation of
China (No. 90715030, 90612018, and 60503043). We would
like to thank the anonymous reviewers for their thoughtful
comments and suggestions.

References

[1] P. H. Gum, “System/370 extended architecture: Facilities for
virtual machines,” IBM Journal of Research and Develop-
ment, vol. 27, no. 6, pp. 530–544, 1983.

[2] J. E. Smith and R. Nair, Virtual Machines: Versatile platforms
for systems and processes. Elsevier, 2005.

[3] C. A.Waldspurger, “Memory resource management in
VMware ESX server,” in Proceedings of the 5th symposium
on Operating Systems Design and Implementation (OSDI),
December 2002.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP), 2003.

[5] A. Whitaker, M. Shaw, and S. Gribble, “Denali: Lightweight
virtual machines for distributed and networked applications,”
in Proceedings of the USENIX Annual Technical Conference,
October 2002.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machines,” in Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation
(NSDI), 2005.

[7] VMWARE, “Migrate virtual machines with zero downtime,”
http://www.vmware.com/products/vi/vc/vmotion.html.

[8] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and
S. Zhou, “Process migration,” ACM Computing Surveys,
vol. 32, no. 3, pp. 241–299, 2000.

[9] P. M. Chen and B. D. Noble, “When virtual is better than
real,” in Proceedings of the Eighth Workshop on Hot Topics
in Operating Systems (HotOS), 2001.

[10] PyGTK, “PyGTK: GTK+ for Python,” http://www.pygtk.
org/.

[11] G. Diwaker, G. Rob, and C. Ludmila, “Xenmon: Qos mon-
itoring and performance profiling tool,” HP Lab, Tech. Rep.
HPL-2005-187, 2005.

[12] M. Arlitt and C. Williamson, “Web server workload charac-
terization: the search for invariants,” SIGMETRICS Perform.
Eval. Rev., vol. 24, no. 1, pp. 126–137, 1996.

[13] J. Dilley, “Web server workload characterization,” HP Lab,
Tech. Rep. HPL-96-160, 1996.

[14] A. Roth and I. Erev, “Learning in extensive form games:
Experimental data and simple dynamic models in the inter-
mediate term,” Games and econmic behavior, no. 8, pp. 164–
212, 1995.

[15] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, “On-
line machine scheduling with applications to load balancing
and virtual circuit routing,” in Proceedings of the ACM
Symposium on Theory Of Computing (STOC), 1993.

[16] G. Chrystal, Algebra, An Elementary Textbook. AMS
Bookstore, 1999, vol. II.

[17] httperf, “http://www.hpl.hp.com/research/linux/httperf/.”

[18] M. Litzkow, M. Livny, and M. Mutka, “Condor - a hunter
of idle workstations,” in Proceedings of the 8th International
Conference of Distributed Computing Systems (ICDCS), June
1988.

[19] Tashi, “http://incubator.apache.org/tashi/.”

[20] VMWare, “Dynamic resource scheduler,” http://www.
vmware.com/products/vi/vc/drs.html.

[21] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif,
“Black-box and gray-box strategies for virtual machine migra-
tion,” in Proceedings of the Fourth Symposium on Networked
Systems Design and Implementation (NSDI), 2007.

[22] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica, “Improving mapreduce performance in heteroge-
neous environments,” in Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2008, pp. 29–42.

[23] S. Liang, S. Jiang, and X. Zhang, “STEP: Sequentiality and
thrashing detection based prefetching to improve performance
of networked storage servers,” in Proceedings of the 27th
International Conference on Distributed Computing Systems
(ICDCS), 2007.

190

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 22:01:54 UTC from IEEE Xplore. Restrictions apply.

