
978-1-4244-2328-6/08/$25.00 © 2008 IEEE

Deploying Virtual Honeypots on Virtual Machine Monitor

Wira Zanoramy Ansiry Zakaria, Siti Rohaidah Ahmad and Norazah Abd Aziz
Cyberspace Security Center, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur

{zanoramy.ansiry, rohaidah, azahaa}@mimos.my

Abstract

Xen is a virtual machine monitor that supports

execution of multiple guest operating systems on the
same computer hardware at the same time with
unprecedented levels of performance and resource
isolation. Honeypot is a decoy system, deployed
throughout the network, which purposely built to
attract and deceive computer intruders and malicious
programs. In this paper, we review the combination of
both, virtualization technologies of Xen and honeypot
concept, in order to deploy and run virtual honeypot
on top of virtual machine monitor.

1. Introduction

Virtualization essentially lets one computer do the
job of multiple computers, by sharing the resources of
a single computer across multiple environments.
Virtual servers and virtual desktops let you host
multiple operating systems and multiple applications
locally and in remote locations, freeing you from
physical and geographical limitations. In addition to
energy savings and lower capital expenses due to more
efficient use of your hardware resources, you get high
availability of resources, better desktop management,
increased security, and improved disaster recovery
processes when you build a virtual infrastructure [1].

Today’s powerful x86 computer hardware was
originally designed to run only a single operating
system and a single application, but virtualization
breaks that bond, making it possible to run multiple
operating systems and multiple applications on the
same computer at the same time, increasing the
utilization and flexibility of hardware.

Virtualization is a technology that can benefit
anyone who uses a computer, from IT professionals
and Mac enthusiasts to commercial businesses and
government organizations. Join the millions of people
around the world who use virtualization to save time,
money and energy while achieving more with the
computer hardware they already own [1].

This paper explores the design and architecture of
Xen, a virtual machine monitor in order to develop a
virtual honeypot. We discuss a bit about a virtual
machines and network implementation in Xen as
general. Finally, we explain the honeypot in detail and
demonstrate our approach.

2. Xen Hypervisor (VMM)

The Xen® hypervisor is a unique open source
technology, developed collaboratively by the Xen
community and engineers at over 20 of the most
innovative data center solution vendors, including
AMD, Cisco, Dell, HP, IBM, Intel, Mellanox, Network
Appliance, Novell, Red Hat, SGI, Sun, Unisys, Veritas,
Voltaire, and of course, Citrix. Xen is licensed under
the GNU General Public License (GPL2) and is
available at no charge in both source and object format.
Xen is, and always will be, open sourced, uniting the
industry and the Xen ecosystem to speed the adoption
of virtualization in the enterprise.

The Xen hypervisor was created in 2003 at the
University of Cambridge Computer Laboratory in
what's known as the Xen Hypervisor project led by Ian
Pratt with team members Keir Fraser, Steven Hand,
and Christian Limpach. This team along with Silicon
Valley technology entrepreneurs Nick Gault and
Simon Crosby founded XenSource which was acquired
by Citrix Systems in October 2007. Xen is an x86
virtual machine monitor produced by the University of
Cambridge Computer Laboratory and released under
the GNU General Public License [2].

 Xen is an open source virtual machine monitor
(VMM) based on para- virtualization technology that
allows the hardware resources of a machine to be
virtualized and dynamically shared between OSs
running on top of it [2].

Xen itself the hypervisor since it operates at a
higher privilege level than the supervisor code of the
guest operating systems that it hosts [2]. In Xen
terminology, each virtual machine (VM) known is
called Domain. Xen provides isolated execution for
each domain, preventing failures or malicious activities

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:56:04 UTC from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

in one domain from impacting another domain.
Multiple user domains called as DomainU in Xen
terminology are created to run guest OSs [3].

Xen virtualization technology available for the
Linux kernel and is designed to consolidate multiple
operating systems to run on a single server, normalize
hardware accessed by the operating systems, isolate
misbehaving applications, and migrate running OS
instances from one physical server to another [2].

2.1. Xen Architecture

In 2005, XenSource released Xen 3.0. Figure 1
shows the architecture of Xen 3.0 hosting four VMs
(Host OS or Domain 0, Guest OS1, Guest OS2, and
Guest OS3). The above figure depicts the basic
architecture of a virtualization platform using Xen. The
Xen Virtual Machine Monitor (VMM) or the
hypervisor works as an idealized hardware layer; an
abstraction which contains the virtualized instances of
the underlying physical hardware interfaces such as the
CPU, memory and I/O operations. This layer is crucial
in facilitating communications between a virtual
machine (VM) and the hardware itself. A host OS or
the VM called Domain 0 has the privilege to the
control interface of the VMM; the mechanism that
enables other guest OS to be created, destroyed and
managed. In short, the management and control
software runs in the host OS.

Figure 1. Xen 3.0 Architecture

2.2. Virtual Machines

A virtual machine is a tightly isolated software
container that can run its own operating systems and
applications as if it were a physical computer. A virtual
machine behaves exactly like a physical computer and

contains it own virtual (ie, software-based) CPU, RAM
hard disk and network interface card (NIC) [1].

An operating system can’t tell the difference
between a virtual machine and a physical machine, nor
can applications or other computers on a network.
Even the virtual machine thinks it is a “real” computer.
Nevertheless, a virtual machine is composed entirely of
software and contains no hardware components
whatsoever. As a result, virtual machines offer a
number of distinct advantages over physical hardware.

Software running within a virtual machine is called
guest software (i.e., guest operating systems and guest
applications). All guest software (including the guest
OS) runs in user mode; only the VMM runs in the most
privileged level (kernel mode). Each guest OS to
perform its own paging using its own guaranteed
memory reservation and disk allocation [5].

2.3. Network in Xen

By default Xen creates a bridge to which it attaches
a physical network interface. It creates a virtual
interface for it and attaches the virtual interface to the
bridge to keep the host or privileged system (dom0)
working. There are three main setup configurations to
enable network working in Xen such as bridge
networking, routed networking with NAT and two-way
routed network. Bridge networking which discuss in
this paper is the most simplest and easiest to configure
within Xen. This type of networking simply allows the
VMs to use a virtual ethernet card to join the existing
network. It can be used for a lot of situations.
Typically bridge networking is used where [6]:

- You can freely place a computer/device on your
existing network.

- Your existing network uses DHCP or Static IP
addresses.

- You want your VMs to be fully visible and
available on your existing network, allowing all
traffic in both directions.

In this configuration (refer Figure 2), dom0 acts as
a virtual hub, forwarding traffic directly. When xend
starts up, it will creates a new bridge named “xenbr0”,
real ethernet interface eth0 is brought down and the IP
and MAC addresses of eth0 are copied to virtual
network interface veth0. The real interface eth0 is
renamed as peth0 and virtual interface veth0 is
renamed as eth0. Then, peth0 and vif0.0 are attached to
bridge xenbr0 where the bridge, peth0, eth0 and vif0.0
are brought up when a domU stats up.

When the guest operating system is up and running,
its virtual network interface (vif) is bridged with the
outside network through the help of Domain 0 (the
host operating system of the machine). With this, the

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:56:04 UTC from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

guest operating system will be assigned an IP address
from the subnet’s DHCP server. Honeyd will run based
on the preconfigured Honeyd script and it deploys
virtual honeypots to all unused IP(s) within the subnet.
These virtual honeypots will reply to any interaction
targeted to the IP(s) that it monitors.

Figure 2. Bridge Networking in Xen

3. What is Honeypot?

The term ‘honeypot’ is usually being used for
representing ‘a container (or pot) of honey’, where it is
often playing off the image of nice sweetness that is
being used as a lure. But in the case of computer
security, this term is being used to represent a new
born computer security concept that is solely based on
deception. According to Wikipedia, a honeypot is a
trap set to detect, deflect or in some manner counteract
attempts at unauthorized use of information systems
[4]. Honeypot is a form of digital bait to trap the
attacker’s tools and activities. Lance Spitzner, the
founder of The Honeynet Project organization, defines
a honeypots as:

“A honeypots is a security resource whose value
lies in being probed, attacked, or compromised [7].”

Honeypots are resources that are meant to have no
authorized activity and no production value.
Theoretically, a honeypots should not see any traffic

and interactions. Any interactions with it are most
likely an illegitimate activity or a malicious activity
[9]. Since honeypots have no production value, no
resource or person should be interacting with them,
therefore, any activity arriving at a honeypots is
assume to be a probe, scan, or attack. Their value
comes from their potential ability to capture scans,
probes, attacks, and malicious activity.

The concept of honeypots is not new. Actually, it is
already been around about since 16 years ago. Clifford
Stoll and Bill Cheswick, whom are icons in computer
security, have written good documentations related to
this concept in the early 1990’s. Stoll’s book entitled
“The Cuckoo’s Egg” and Cheswick’s paper “An
Evening with Berferd”, has already explained the basic
concepts of honeypots [7]. At that time, the term
‘honeypots’ was not coined yet, but the idea can be
clearly seen in their writings. Even though their papers
are non-technical, but the contribution does gave
impact to the emergence of the honeypots technology.
Peoples in the honeypots community took their
contribution as a launch pad for expanding the interest
and developments related to honeypots technology.

Deception Toolkit or better known as DTK, is the
first ever honeypots solution created. It was designed
and developed by Fred Cohen and was released in
1997 [5]. DTK was constructed by a group of Perl
scripts and C codes, where its main task is to emulate
various of UNIX vulnerabilities and log the actions of
the attacker that interacts with it. DTK simply listens
for inputs, provides sensible responses that seems
normal and lulls the attacker into a false sense of the
host insecurity [8]. In 1998, the first commercial
honeypots, CyberCop Sting, was released. At the same
time, the concept of virtual systems was first
introduced.

4. Honeypot on Virtualization Layer

Honeypots can be built from a physical machine or
even by emulation [10]. A physical honeypots is a real
machine or real host that has its own valid IP address
[9, 12]. For example, a physical Gentoo Linux
computer with FTP service running. A virtual
honeypots is an emulated machine with its own
preconfigured modeled behavior, where this behavior
defines how it will respond to network traffic. Perl
scripts that emulate a virtual host with emulated
Sendmail service is an example of it. Virtual
honeypots are very attractive because they require
fewer physical computer systems and at the same time
reduce maintenance costs [11]. By using virtual
honeypots, it is possible to populate a network with
multiple host running different types of operating

Computer - Xen

Dom0 Dom1
(linux)

eth0
10.1.0.

xenbr0
10.1.0.3

vif1.0

eth0
10.1.0.

vif0.0

peth0

LAN

Honeyd
daemo

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:56:04 UTC from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

systems and services. One more advantage is virtual
honeypots is much more easy to re-create and re-
deploy after it has been compromised and exploited
[12]. The idea of virtual honeypots made honeypots
technology more affordable and made it easier to
deploy.

Figure 3. Honeypot on Virtualization

We designed a simple setup for deploying virtual
honeypots. Instead of using a real machine to host the
Honeyd software, we used a virtual machine, which is
running on top of a virtualization layer. The virtual
machine, or guest OS, is installed with Linux operating
system. Honeyd, an open source low-interaction virtual
honeypot daemon is installed after that, within the
Linux. With Debian or Ubuntu Linux, we used the
default Aptitude package manager to install Honeyd.
The virtualization layer is built by using Xen. The
physical machine is installed with Xen kernel and the
kernel is selected during boot up. Once Xen is run, the
virtualization layer is up and taking over the machine.
The virtual machine is run after the virtual machine’s
machine. Even though the virtualization layer can run
multiple virtual machines at the same time, this project
only runs one virtual machine. One virtual machine is
already enough to install and run the Honeyd daemon.
Multiple virtual machines could burden the Honeypot
machine and it is much harder to maintain and control.

In this setup, Honeyd is responsible in creating and
deploying the virtual honeypots throughout the
network that the Honeypot Machine resides. Honeyd
runs based on the Honeyd script contained in the file

honeyd.conf. This configuration file is important, as it
defines the workability of Honeyd and the behaviors of
all virtual honeypots that it emulates in the network.
This low-interaction virtual honeypots emulated by
Honeyd is responsible in monitoring all the unused
IP(s) inside the network that it monitors. It will reply
all communications that try to interact with the unused
IP(s). The Honeyd software is controlled and
configured from the terminal application inside Linux
operating system at the virtual machine. Since Honeyd
is run inside a virtual machine, it is more secure from
being attack and compromised. This is because the
operating system inside the virtual machine itself is a
separate compartment from the software that runs
below it, which is the virtual machine monitor. So, our
virtual honeypot framework is farther from the reach of
malicious attackers.

All logs generated by the Honeyd daemon will be
routed to a database located on a remote server (refer
Figure 3). These collected logs will be used for
analysis purposes. This database is located outside of
the Honeypot machine because we want to protect the
collected data from the risk of losing it. This is
because, if the Honeypot Machine is being seriously
attacked, compromised or taken down, we still have
our data safe and sound inside a database elsewhere.

5. Conclusion

Virtualization is a technology that has a lot of

promising values for the deployment of honeypots. We
can save a lot of time, energy and cost in honeypot
deployment, and at the same time, maintains the
original objectives of deploying honeypots. With
virtualization, we could bring down the risk of running
honeypot host inside our organization. Besides that,
this technology also can be used by university students
to test and run multiple style of honeypot deployment.

6. References

[1] Virtualization Basic, 2008 [online].
http://www.vmware.com/virtualization

[2] Abels T., Dhawan P. and Chandrasekaran B.,
2005. “An Overview of Xen Virtualization”.

[3] Bryan.C,Todd.D,Dow.E,Evanchik.S,Finlayson.
M,Herne.J,Matthews.J.N. Xen and the Art of Repeated
Research. Proceedings of the USENIX Annual
Technical Conference 2004 on USENIX Annual
Technical Conference: 47 – 47.2004.
http://www.clarkson.edu/class/cs644/xen/files/repeated
xen-usenix04.pdf.

Hardware

Virtualization Layer

Domain
0

Honeyd

Linux

Guest OS

Databa
se

Virtual Honeypot

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:56:04 UTC from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

[4] Virtualization Basic, 2008 [online].
http://www.vmware.com/virtualization/

[5] Samuel T. King et.al, 2007. SubVirt:
Implementing malware with virtual machines.

[6] Xen Networking., 2008 [online].
http://wiki.kartbuilding.net/index.php/Xen_Networkin
g

[7] Lance Spitzner, 2002. Honeypots: Tracking
Hackers

[8] Zhang, F., 2004. DTK: Deception Toolkit [online].
Available from:
http://www.icst.pku.edu.cn/honeynetweb/reports/dtk.p
pt

[9] Kuwatly, I., Sraj, M., Al Masri, Z. & Artail, H.,
2004. A Dynamic Honeypot Design for Intrusion
Detection [online]. Available from: http://webfea-
lb.fea.aub.edu.lb/proceedings/2004/SRC-ECE-04.pdf

[10] Jiang, X. & Dongyan Xu, 2004. BAIT-TRAP: A
Catering Honeypot Framework [online]. Available
from:
http://www.cs.purdue.edu/homes/jiangx/collapsar/publ
ications/BaitTrap.pdf

[11] Niels Provos, 2004. A Virtual Honeypot
Framework [online]. Available from:
http://www.citi.umich.edu/u/provos/papers/honeyd.pdf

[12] Grimes, R. A., 2005. Honeypots for Windows.
Berkeley : Apress.

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:56:04 UTC from IEEE Xplore. Restrictions apply.

