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Abstract—Device driver failures have been shown to be a major
cause of system failures. Network services stress NIC device
drivers, increasing the probability of NIC driver bugs being
manifested as server failures. System virtualization is
increasingly used for server consolidation and management. The
isolated driver domain (IDD) architecture used by several virtual
machine monitors, such as Xen, forms a natural foundation for
making systems resilient to NIC driver failures. In order to
realize this potential, recovery must be fast enough to maintain
QoS for network services across NIC driver failures. We show
that the standard Xen configuration, enhanced with simple
detection and recovery mechanisms, cannot provide such QoS.
However, with NIC drivers isolated in two virtual machines, in a
primary/warm-spare configuration, the system can recover from
an overwhelming majority of NIC driver failures in under 10ms.

I. Introduction

A significant fraction of bugs in operating systems are
found in device drivers [3]. Thus, errors in drivers are a major
cause of system failures [18]. A faulty device driver can cause
the entire system to crash, hang, or exhibit arbitrary incorrect
behavior. In order to improve the reliability of systems,
drivers must be isolated, limiting their ability to corrupt other
parts of the system [18]. Furthermore, the system must be able
to detect erroneous driver behavior and recover by restoring a
working driver. In current systems, since a faulty driver can
corrupt the entire system, recovery is likely to require a
complete system reboot as well as recovery of the application
state. For many applications, such as most network services,
lengthy service interruption is unacceptable.

The resiliency of systems to driver failures can be
improved by isolating drivers in light-weight domains [18],
and by user-level drivers [9]. Isolating the device drivers from
the kernel prevents buggy drivers from harming the kernel and
crashing the system. Device driver recovery is done by
restarting and re-attaching the device driver to the running
kernel. These approaches require the kernel and device drivers
be be modified or the use of non-standard device drivers.

System virtualization [16] is now widely used in data
centers to provide workload isolation and flexible
management of consolidated servers [2]. Several virtual
machine monitors (VMMs) use an isolated driver domain
(IDD) architecture to virtualize I/O devices [4, 12, 14]. With
the IDD architecture, unmodified commodity device drivers
(e.g., NIC drivers) run in a different virtual machine (VM)
from applications. The IDD architecture does not eliminate
the ability of a malicious device driver to prevent correct
execution — for example, a NIC driver can drop all packets.

However, the IDD architecture has the potential to prevent
most non-malicious device driver failures from corrupting
other VMs [4]. Since system virtualization is commonly used
in data centers for other reasons, there is strong motivation to
utilize the IDD architecture for resiliency to driver failures
without resorting to special or modified drivers.

Unfortunately, without additional mechanisms,
virtualization utilizing the IDD architecture is not sufficient to
allow applications to continue uninterrupted across driver
failures. On the contrary, with virtualization, the effects of
failed drivers are worse since a single device driver failure can
impact many VMs sharing the device. When drivers reside in
a privileged VM, such as Dom0 in the Xen VMM, the entire
virtualized system, including all the application VMs, must be
restarted if the drivers crash the privileged VM. Even in a
configuration where device drivers reside in separate non-
privileged VMs [4], failure of a driver VM causes all VMs
sharing the device exported by the driver VM to stop working.

Table I. Impact of fault injection in NIC device driver.

# injections % application failuresystem
configuration

Linux 1987 66.0%
Xen-base 2574 66.1%
Xen-IDD 2809 63.4%

To illustrate the point above reg arding the IDD
architecture, Table I shows the results from fault injection into
a NIC device driver (see Sections III and IV for details). The
application is a simple user-level ‘‘ping’’ program between a
separate physical system and the target system. Results are
shown for a target system that is Linux without virtualization,
Linux in an application VM on a standard Xen configuration
(Xen-base) where the driver is in the privileged VM, and
Linux in an application VM on a Xen configuration with a
separate driver VM (Xen-IDD). In all three cases a similar
fraction of injected faults caused the application to fail.

The focus of this paper is on achieving resiliency to NIC
driver failures in virtualized systems using the IDD
architecture. With the Xen VMM, we describe and evaluate
several mechanisms that provide detection and recovery from
NIC driver failure. Our evaluation is based on injecting faults
in the driver code and measuring network service interruption.
We present a driver failure detection mechanism that is
capable of detecting hangs as well as crashes. Our results
show that simply rebooting the VM with the NIC driver when
driver failure is detected results in recovery delay of multiple
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seconds and thus cannot provide transparent recovery for
network services.

We present a fast recovery mechanism based on
maintaining two VMs with the NIC driver: the primary and a
‘‘warm spare.’’ When driver failure is detected, recovery is
performed by replacing the primary with the spare. While
previous schemes reported recovery times on the order of a
second [17] or hundreds of milliseconds [4], in the great
majority of cases our scheme recovers in less than 10ms. Such
fast recovery allows the system to meet QoS requirements for
many network services. This is accomplished using
unmodified application VMs, minimal modifications to the
Xen VMM and driver VM kernel, and user-level scripts in the
privileged VM. The scheme incurs no performance overhead
and insignificant memory overhead during normal operation.

While our evaluation is based mainly on the Intel Pro 100
100Mb NIC, we have also validated our mechanism using
another 100Mb NIC and a 1Gb NIC. With 100Mb NICs, no
device driver modifications were required. With the 1Gb NIC,
minor modifications (15 lines of code) were required.

The relevant aspects of virtualization technology are
reviewed in Section II. The evaluation methodology is
described in Section III. Section IV presents an evaluation of
the impact of device driver failures on standard Linux and on
Linux in a VM hosted by Xen. Section V describes and
evaluates three system architectures that provide recovery
from driver failures. Related work is presented in Section VI.

II. System Virtualization

Virtualization technology allows multiple VMs, each
with its own OS, to run on a single physical machine [16]. A
critical function of the VMM is to isolate VMs from each
other so that activities in one VM cannot affect another
VM [15].

In Xen [1], a privileged VM (PrivVM), often referred to
as Dom0, is used to control and manage unprivileged VMs
running applications (AppVMs). The PrivVM has direct
access to the hardware devices on the system and typically
houses all the device drivers. A failure of the PrivVM can
cause the entire virtualized system to crash.

The split device driver architecture in Xen facilitates the
sharing of devices among VMs [4]. With the split driver
(Fig. 1), a frontend driver resides in each VM sharing the
device. One backend driver together with the actual device
driver reside in one VM. Requests from frontends are
processed by the backend, using the actual device driver to
perform the requested operations. Frontend/backend drivers
are paravirtualized (PV) but can be used in fully virtualized
(FV) VMs. FV VMs can use PV drivers in place of more
complex device drivers to improve reliability and performance
(by eliminating device emulation).

Communication between frontend and backend drivers is
done using requests and responses on a ring data structure in

Figure 1: Xen virtualization architecture

memory shared between the respective VMs. The requests are
often pointers to pages in memory containing the data, such as
a packet that a VM wishes to send. These pointers, called
grant references, allow one VM to give access to certain
memory pages to other VMs. Once a request or response is
placed on the shared ring, an event can be sent notifying the
other side of the pending request/response. The use of the ring
is coordinated using request/response producer/consumer
indices. For network devices, there are two shared rings, one
used for transmission (transmit ring) and one for reception
(receive ring).

To initialize a frontend-backend connection, grant
references (for setting up the shared ring) and event channel
ports must be communicated between frontend and backend
drivers residing on different VMs. To allow this, Xen provides
a centralized store call the XenStore, implemented as a
process running in the PrivVM. Since communication through
the XenStore is asynchronous, involving multiple levels of
indirection, operations are slow and are typically only used for
frontend-backend connection setup and teardown.

In order to isolate the PrivVM from device drivers, Xen
allows backends with their device drivers to be hosted on
unprivileged VMs [4]. A VM hosting a device driver must be
able to directly access the corresponding device controller.
Xen allows VMs to have direct access to PCI devices by
mapping the PCI I/O memory address space into the VMs
virtual address space. VMs hosting drivers that directly access
devices are referred to in this paper as driver VMs (DVMs).
VMs which host only network devices are referred to as
network driver VMs (NetDVMs). Multiple AppVMs can
share a single NetDVM.

III. Evaluation Methodology

The results in this paper were obtained using several
systems based on the Intel Core-2 processors. For most
experiments, we used Intel Pro 100 NICs interconnected by a
100Mb switched ethernet network. Xen 3.3.0 was used as the
VMM. The non-virtualized setup used the Linux kernel
version 2.6.18.8. XenoLinux kernel version 2.6.18.8 was used
for the PrivVM, AppVM, and NetDVMs.

196

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:18:20 UTC from IEEE Xplore.  Restrictions apply. 



Software-implemented fault injection was used to inject
faults in the NIC driver. This was done using our Gigan fault
injector that resides in the VMM and is capable of non-
intrusively injecting into VMs [11]. Some of these injections
simulate programming errors, such as invalid pointer access
and incorrect loop termination conditions [18]. For code
injection, faults were injected into every byte of the most
frequently used functions[8] (six out of 75) in the E100 device
driver, identified by the Xenoprof sampling profiler [13].
These six functions account for roughly 29% of the E100
code. The rest of the functions are used for device/driver
initialization. Injection was triggered by setting hardware
breakpoints on the virtual addresses targeted for injection. If
the breakpoint fired, a random bit of the targeted byte was
flipped. Register injection was similar, except that when the
breakpoint fired a random bit of a random general-purpose
register was flipped. In the reported results, an injection is
counted only if it was actually activated — the breakpoint
fired and caused a bit flip.

The outcome of each injection experiment is classified as
either crash, hang, silent application failure, or non-
manifested. A crash occurs when a kernel panics or the VM is
killed by the VMM. A hang occurs when the VM stops
responding with no explicit report of a crash. A silent
application failure occurs when no hang or crash is detected
but the application is unable to complete successfully (see
below). Non-manifested means that no errors are observed.

Fault injection in a device driver often causes the kernel
hosting the driver to crash or hang. To facilitate the
experiments, for the Linux and Xen-base targets (see
Section I), the targets were run inside a VM. This allowed the
injection campaign software to resume the campaign after a
crash or hang without manual intervention [11]. Thus, with
the Xen-base system target, there were two lev els of Xen: an
inner-level Xen running inside the VM hosted by the outer-
level Xen. In this case, injection was done from the Gigan
injector located in the inner-level Xen. For the rest of the
configurations, in which device drivers were isolated in their
own VM, the target system ran directly on a physical machine.

A user-level ping was used to exercise the NIC drivers.
This application, consisting of two processes running on
separate physical hosts, sends a UDP packet every 1ms from
the sender host to the target system. Upon delivery of this
packet, an acknowledge UDP packet is sent back. When the
target is a virtualized system, one of the application processes
is run on an AppVM. The network interruption latency, which
is a combination of failure detection and recovery latency, is
the maximum time between reception of successive ping
acknowledgements on the sender host.

The application process on the target system normally
executes for 7 seconds during which it receives packets before
reporting normal termination. If there is a network
interruption, packets are not received so the application may

execute for a longer period before accumulating 7s during
which it receives packets. One injection run consists of
booting the target system, randomly picking a time between 0
and 5s for when to set a breakpoint at the injection address,
and running the application. If the application does not record
normal termination within 22s (or in some experiments 14s), a
timeout is triggered and that is interpreted to be a ‘‘silent
application failure.’’

IV. Impact of Device Driver Failures

In a conventional system, device driver failure is likely to
lead to overall system failure. In our experiments (Table II),
64.9% of injections into the E100 driver, running in a
conventional Linux system, led to system crashes or hangs.
As discussed earlier, recovery in this case requires a reboot of
the entire system. This involves a long service interruption.
Furthermore, without additional mechanisms, such as
checkpointing/rollback, rebooting also leads to loss of
application state.

Table II. Device driver code injection results

System
Configuration Linux Xen-base Xen-IDD

Injections 1987 2574 2809
System Crash 54.6% 0.0% 0.0%
System Hang 10.3% 0.0% 0.0%
PrivVM Crash - 56.7% 0.0%
PrivVM Hang - 7.7% 0.0%
NetDVM Crash - - 55.5%
NetDVM Hang - - 3.0%
Silent App Failure 1.1% 1.7% 4.9%

With the standard Xen configuration (Fig. 1), the device
drivers are in the PrivVM, which is isolated from the AppVM.
Table II shows that injection into the E100 driver in the
PrivVM leads to crashes/hangs of the PrivVM (in 64.4% of
injections) and not of the VMM or AppVM. However, the
overall effect on the application running in the AppVM is the
same (fails in 66.1% of injections). This is not surprising
since crashes/hangs of the PrivVM effectively renders the
entire virtualized system inoperable. Thus, it is desirable to
remove the device drivers from the PrivVM and place them in
a separate DVM. This allows the DVM to fail independently
from the PrivVM and leave the virtualized system intact.

Fig. 2 shows a configuration where device drivers are
isolated using DVMs. The NIC device driver is in the
NetDVM while all the rest of the drivers are in one DVM.
This configuration isolates all the device drivers from the
PrivVM and AppVM and isolates the NIC driver from other
drivers. As shown in Table II, injection into the NIC driver in
this setup only crashes/hangs the NetDVM (in 58.5% of
injections), leaving all other components of the system intact.
While this configuration prevents driver failures from
propagating to the AppVM and the PrivVM, the effect on the
application running in the AppVM (fails in 63.4% of
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Figure 2: Xen-IDD − Xen with an Isolated
Device Driver VM

injections) is the same as with the Xen-base and Linux
configurations. This is because failures of the NetDVM
disrupt the network connectivity of the AppVM. Without
some mechanism to recover the faulty NetDVM, the
application cannot continue to operate.

V. Device Driver Recovery

This section describes NIC driver recovery techniques
that can be used in a virtualized system where the NIC device
driver is isolated in a NetDVM. These recovery techniques are
based on the assumption that the driver code is not completely
dysfunctional. Rather, driver bugs may lead to failure in rare
cases, under particular timing and ordering of asynchronous
ev ents in a system. Such Heisenbugs [6] are unlikely to recur
once the driver is reset and the system is in a slightly different
state. In addition, these techniques are effective for driver
errors that are the result of transient hardware faults.

The first recovery scheme simply detects and reboots a
failed NetDVM. While this works and enables the AppVM to
continue, it is also slow. The next technique speeds up
recovery by deploying a warm-spare NetDVM to take over
once the primary NetDVM fails. Analysis of this mechanism
reveals parts of the recovery process that can be further
optimized, leading to the final recovery technique that can
reduce network interruption time to less than 10ms.

A. Failure Detection Mechanisms

NetDVM recovery is initiated after the VMM detects a
crash or hang. Crashes are detected when 1) the crash handler
in the VM’s kernel makes a hypercall to the VMM or 2) the
VMM responds to illegal VM activity by killing the VM.

Hangs are diagnosed using two heuristics. The first
heuristic maintains that a kernel with multiple runnable
processes should be context switching among those processes.
The VMM detects context switching by monitoring page table
base register (PTBR) changes of the VM. If PTBR changes
are not detected for a specified quanta of time (500ms), a hang
is reported. To ensure that PTBR changes occur in a fault-free
VM, the VM executes two simple processes that periodically

(every 150ms) wake up and execute a few instructions.

The second heuristic applies to the transmit rings of
NetDVMs. When an AppVM transmits a packet, it places it
on the shared ring. An operational NetDVM should eventually
remove the packet from the ring and place a response packet
on the ring. Code in the VMM periodically (every 100ms)
samples the shared ring indices. This code identifies a hang
when it determines that there were packets on the transmit ring
in one sample but none of these packets were processed and
responded to by the NetDVM before the next sample. This
mechanism cannot be applied to the receive ring since it is not
known when packets will be received by the NetDVM.

B. Recovery Using Reboot

When a crash/hang is detected by the VMM, a message is
sent to a user-level recovery agent running in the PrivVM.
This message is sent using a shared ring and an event channel
that the recovery agent sets up with the VMM when it is
initialized. When the recovery agent is alerted to a crash/hang,
it recovers the system by pausing the failed NetDVM, booting
a new NetDVM, and establishing a new frontend-backend
connection with the AppVM. As explained below, this
requires: 1) modification of Xen’s management tool, allowing
it to remove access to the NIC device from a failed NetDVM;
and 2) enhancement of the suspend/resume code in the
AppVM kernel to facilitate frontend-backend reconnection.
Fig. 2 shows the system setup for this recovery technique.

It might be expected that the first action upon detecting a
crash/hang of a NetDVM would be to destroy it. However,
despite the crash/hang of the NetDVM, the NIC may still be
writing into the NetDVM’s memory. If the failed NetDVM is
destroyed, its memory might be reused by the VMM (e.g., for
the new NetDVM), leading to memory corruption. Hence, the
failed NetDVM is, initially, only paused, keeping all its
memory, instead of being immediately destroyed.

A VMM that allows VMs to directly access PCI devices
must prevent concurrent accesses to a single PCI device by
multiple DVMs. Hence, Xen’s management tools (in the
PrivVM) prevent another VM from accessing the same PCI
device as a paused VM. In order to allow a new NetDVM to
boot and control the NIC, the new NetDVM must be given
access to the PCI device. Therefore, a minor modification to
the management tools was done to allow the paused NetDVM
to be flagged as no longer accessing the NIC device. This
change allows the new NetDVM to be granted access to the
NIC device. The failed NetDVM is destroyed shortly after the
new NetDVM is booted, without ever being unpaused.

A new frontend-backend connection must be established
between the new NetDVM and the AppVM to complete
recovery. This should be transparent to the application on the
AppVM so that there will be no need to modify applications.
Fortunately, this ability is already implemented in Xen for VM
checkpointing/restoring. During checkpointing of a VM, all
frontend drivers suspend activity and prepare for system-level
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Table III. Device driver injection results with recovery.

system
configuration

injections NetDVM
crash

NetDVM
hang

silent app
failure

non
manifested

successful
recovery

IDD Reboot Recovery 568 (code) 54.0% 3.2% 2.8% 40.0% 100.0%
IDD Spare Recovery 584 (code) 53.4% 3.4% 2.9% 40.3% 100.0%
IDD Fast Spare Recovery 2856 (code) 55.2% 3.1% 2.6% 39.1% 99.9%
IDD Fast Spare Recovery 1300 (register) 28.6% 3.0% 0.5% 67.8% 99.9%

suspension. During VM restoration, the frontend drivers
resume activity and transparently reconnect with the backend
drivers. Unfortunately, checkpointing and restoring a VM is
slow. To avoid full checkpoint/restore, the suspend/resume
code in the AppVM kernel was modified to allow individual
frontend drivers to be selectively suspended/resumed. Using
this mechanism, the recovery agent directs the AppVM to
transparently reconnect only the network frontend driver to the
backend driver on the new NetDVM.

This recovery technique was evaluated by performing
fault injection into the code of the E100 device driver as
described in section III. Table III shows the results.
Recoveries were attempted on 325 detected hangs/crashes out
of 568 injections and successfully restored the system 100% of
the time. The mean time of recovery was 7.47s and ranged
from 7.29s to 9.36s. The slowest component of this recovery
mechanism was the time required to boot a new NetDVM
(approximately 3s).

C. Recovery using a Warm-Spare NetDVM

The booting of a new NetDVM during recovery can be
avoided by using a warm-spare NetDVM, paused, waiting to
take over when a NetDVM fails. The system setup for this
recovery technique is similar to the Xen-IDD architecture
(Fig. 2), except for the addition of a spare NetDVM. To
initialize the system, the PrivVM boots both the spare and
primary NetDVMs, pausing the spare once its OS has booted.
During recovery, the recovery agent: 1) pauses the failed
NetDVM, 2) unpauses the spare NetDVM, 3) transfers NIC
device control to the spare NetDVM, and 4) sets up a new
frontend-backend connection between the spare NetDVM and
the AppVM. Most of the required modifications are the same
as for the reboot recovery technique. In addition, a simple
mechanism is implemented to inform the PrivVM when to
pause the spare NetDVM during initialization. Specifically,
the PrivVM monitors an entry in the XenStore that the spare
NetDVM writes once it boots.

Results of fault injection into the code of the E100 device
driver (Table III) show that recoveries were attempted on 332
detected hangs/crashes out of 584 injections and successfully
restored the system 100% of the time. The mean time of
recovery was 4.52s and ranged from 4.33s to 7.69s. Most of
this time was spent: (I) invoking the recovery agent inside the
PrivVM, (II) transferring control of the NIC device to the
spare NetDVM, and (III) establishing a new frontend-backend
connection. As with the NetDVM reboot scheme, the

recovery agent is invoked by a message sent from the VMM.
Due to the asynchronous nature of this communication, it
takes approximately 0.4s for the recovery agent to respond to a
detected NetDVM failure. The following paragraphs detail the
impact of operations (II) and (III) above on the recovery time.

In the reboot recovery mechanism, the time to boot a new
NetDVM includes mapping the NIC to the NetDVM address
space and then probing the NIC. Most of the boot time is
saved by deploying a warm-spare NetDVM. However, the
mapping and probing of the NIC device must still be delayed
until recovery since the NIC device is exclusively accessed by
the primary NetDVM up to that point.

The permission to map the PCI NIC device to the
NetDVM’s address space is controlled by a PCI-backend
driver located in the PrivVM and a PCI-frontend driver located
in the NetDVM. Before the spare NetDVM can access the
NIC, the recovery agent issues a request for the spare
NetDVM to be given the access. This process takes
approximately 1s to complete due to the required multiple
interactions, via the XenStore, among the recovery agent,
Xen’s user-management utilities, the PCI-backend driver, and
the PCI-frontend driver.

To restore network connectivity to the AppVM, a
frontend-backend connection must be established with the
spare NetDVM. The same mechanism used in the NetDVM
reboot technique is used here. Initiating and establishing this
connection requires multiple handshakes, via the XenStore,
between the PrivVM and AppVM and between the PrivVM
and spare NetDVM. This takes about 1.8s to complete.

The memory overhead of keeping a spare NetDVM is
64MB, which is used to run the XenoLinux kernel and
applications to setup and run the network backend. However,
since the memory content of the spare NetDVM is nearly
identical to the primary NetDVM, most of this overhead could
be eliminated by using content-based memory sharing in the
VMM [7]. Since the spare NetDVM is paused, it does not
consume any CPU cycles.

D. Minimizing NetDVM Failover Latency

The second paragraph of the previous subsection lists the
three operations responsible for most of the latency of
recovery with the warm-spare NetDVM. Most of the latency
of (I) can be eliminated by moving the main functionality of
the recovery agent into the VMM. Most of the latency of (II)
and (III) can be eliminated by allowing the spare NetDVM to
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discover and set up the NIC device and form the network
frontend-backend connection with the AppVM during system
initialization, prior to recovery. With these optimizations,
recovery entails pausing the failed primary NetDVM,
unpausing the spare NetDVM, and performing minor NIC
device and network backend re-initialization.

This recovery technique requires that the primary and
spare NetDVMs have access to a single NIC device and use
the same shared rings to perform network communication with
the AppVM. The modifications required for this recovery
technique are: (M1) VMM modification, allowing it to control
the recovery of the NetDVM; (M2) VMM modification,
allowing it to remap grant permissions on-the-fly; (M3) VMM
modification, allowing it to redirect event notifications;
(M4) VMM modification, allowing a VM to invoke a new
hypercall to pause itself; (M5) modification to Xen’s PCI
backend driver, allowing PCI device co-ownership; (M6) a
new kernel module in the spare NetDVM to perform NIC
device and network backend re-initialization; and (M7) a new
function in the NetDVM network backend device driver,
allowing the existing shared ring to be attached to the backend
during recovery. All of these modifications together required
adding 246 lines of code to the Xen VMM, 200 lines of code
to NetDVM kernel, and 51 lines of code to the PrivVM kernel.

The system configuration for this mechanism is similar to
the previous subsection. However, system initialization differs
in two ways: (1) the spare NetDVM pauses itself after setting
up the frontend-backend connection with the AppVM and
(2) when the primary NetDVM boots, it forms a frontend-
backend connection with the AppVM by mapping in the
shared rings used in the connection between the AppVM and
the spare NetDVM. VMM code (M1) provides the
functionality of the recovery agent. When an error is detected,
this code pauses the failed NetDVM, initiates unmapping of
some pages from the failed NetDVM (see below), and
unpauses the spare NetDVM.

In this setup, the AppVM effectively has a single network
frontend that is connected to two network backends (spare
NetDVM and primary NetDVM), with only one network
backend active at a time. It is transparent to the AppVM
which NetDVM is handling its network requests. Hence, the
AppVM is not involved in the recovery process, thus reducing
the recovery latency. (M2) and (M3) implement this ability by
remapping and redirecting grant references and event
notifications to the active network backend. These
modifications require two minor changes to the VMM. First,
hooks are added to change grant references associated with the
failed NetDVM to refer to the spare NetDVM. Second, one
end of an event channel is allowed to be disconnected from
one VM and reconnected to another VM without involving the
VM at the other end.

During recovery, the VMM (M1) removes from the failed
NetDVM the mapping to pages used for buffers by the shared

rings between the AppVM and NetDVM. The spare NetDVM
maps these pages into its address space on-the-fly (M2).

During recovery, the spare NetDVM re-initializes the
NIC device and network backend driver (M6). This involves
re-initializing the DMA regions. Furthermore, since the failed
NetDVM may corrupt the NIC state, the re-initialization
involves a reset of the NIC (see Subsection V.F). The private
shared ring indices in the network backend driver are updated
with current values from the shared rings (transmit and
receive), so that the spare NetDVM can continue consuming
requests and putting responses at the locations where the failed
NetDVM left off. A new function is added in the network
backend device driver in Linux (M7) to allow for this shared
ring re-attachment to occur.

A kernel module is added to the spare NetDVM (M6).
During system initialization, this module utilizes a new
hypercall to the VMM that pauses the calling VM (M4).
When the VMM unpauses the spare NetDVM, during
recovery, the spare NetDVM begins to immediately execute
code which initializes the NIC device and network backend.

Since setting up access to the NIC device for the spare
NetDVM is slow, this step is moved to system initialization by
allowing both the spare and primary NetDVMs to have active
use of the NIC device (M5). This requires a modification to
the PCI backend driver in the PrivVM to maintain multiple
connections (one for each NetDVM) to a single PCI device.
Concurrent access to the device is still prevented by ensuring
only one NetDVM is unpaused at any time.

Figure 3: Network interruption latency using fast
failover spare NetDVM

Evaluation of this approach consisted primarily of code
and register injection into the E100 device driver. As shown in
Table III, with code (register) injection, out of 2856 (1300)
injections, 97.4% (99.5%) were not manifested or triggered
recovery. When it was triggered, recovery was successful in
99.9% of the cases. In the two cases that failed, the AppVM
no longer received packets after recovery. Fig. 3 shows the
distribution of network interruption times (recovery times)
with fault injection in the driver code. In 91% of recoveries,
the network interruption time was less than 10ms. All of these
cases were crashes that were immediately detected. Most
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interruption durations over 10ms were due to detection latency
of the hang detectors, ranging between 200ms for the transmit
ring hang detector to 1s for the PTBR hang detector. There
were also cases where crashes took as much as 500ms to
detect since the NetDVM kernel was stuck recursively calling
fault handlers before it finally panicked.

E. Silent Application Failures

A small portion of injections (less than 3%) caused the
benchmark to fail silently. These were the results of errors
that disrupted the NetDVMs ability to provide network
connectivity but failed to be detected by the mechanisms
discussed in Subsection V.A. Three examples of this class of
errors, that resulted from code injection into the E100 NIC
with the fast recovery scheme, are discussed below.

To allow interrupt number sharing in Linux, interrupt
handlers for device drivers probe their devices to determine if
they generated the interrupt. The first silent failure was caused
by injecting into the code that performs this check, leading the
interrupt handler to incorrectly determine that the NIC did not
generate the interrupt. This caused the handler to exit without
processing the interrupt, leaving the device unusable.

The second silent failure was a result of a fault that
changed the condition check in a conditional jump. This
caused a function in the driver to incorrectly return an error
code, leading higher-level operations in the driver to fail. The
result was that incomplete command sequences were sent to
the NIC, preventing it from properly performing the desired
function.

The third silent failure was caused by a fault in the code
that allocates new buffers for received packets after old ones
fill up. The fault prevents the buffers from being allocated,
and thus, packets could no longer be received.

F. Recovering from Failures of other NIC Drivers

All the results reported so far were for the Intel E100 NIC
driver. To determine the extent to which the the fast recovery
scheme depends on a particular NIC, we evaluated the scheme
with the RealTek 8139 100Mb NIC. The results with this NIC
were similar to the results with the E100 NIC. Specifically,
out of 1044 injected faults, 58% resulted in detectable
NetDVM failures. Recovery was successful for all these
detectable failures. In 87% of recoveries, the network
interruption time was less than 16ms.

Our scheme is not able to achieve fast recovery for 1Gb
NICs without small modifications to the device driver. A key
to achieving fast recovery is the ability to quickly reset the
NIC when failing over to the spare NetDVM. Resetting the
NIC updates the transmit and receive descriptor rings in the
device with memory locations from the spare NetDVM.
Resetting the NIC also re-initializes the hardware state, which
may have been corrupted by the failed NetDVM. The problem
with 1Gb NICs is that a full reset can take up to 1.8s to
complete. This was observed in three different 1Gb NICs:

Broadcom Tigon 3, Attansic Atheros L1E, and Intel E1000.
Most of this time is due to auto-negotiation and PHY training
that must be performed on a reset [10].

In most cases, the physical link is not affected when a
device driver fails. Hence, performing link negotiation is
rarely necessary for recovery. Thus, as long as the NIC state is
not corrupted, a full NIC reset can be avoided, thereby
overcoming the above difficulty with 1Gb NICs. The only
necessary operation is updating the descriptor rings in the
NIC. While recovery may fail if the driver failure corrupts the
NIC state, the experimental results below demonstrate that this
is unlikely.

For the E1000 NIC we made small modifications to the
driver to allow the descriptor rings to be updated without
performing a hardware reset. The changes consisted of adding
15 lines of modified versions of existing functions.

As part of normal operation, the E1000 NIC caches
receive descriptors [10]. This poses a problem during recovery
since these cached descriptors contain memory locations
belonging to the failed primary NetDVM. Incoming packets
using these cached descriptors will be lost, thus increasing
network interruption latency. To avoid this, these cached
descriptors must be quickly purged immediately after
recovery. Purging is performed by having the recovery
module in the spare NetDVM send out ping requests
immediately after recovery so that the returning ping replies
flush out the invalid cached descriptors.

With the modifications above, out of 2289 injected faults,
37% resulted in detectable NetDVM failures. Avoiding the
full NIC reset caused more unsuccessful recoveries: 18 out of
837 attempted recoveries, compared to 5 out of 2680
attempted recoveries for the 100Mb NICs. In 91% of
detectable failures, the network interruption latency is less
than 33ms. Most of the 33ms interruption latency is due to a
10ms sleep (actually measured between 10-19ms) that exists
as part of the E1000 descriptor ring re-initialization code.
When this sleep was removed, the network interruption
latency was reduced to less than 10ms for 86% of recoveries.
However, the number of unsuccessful recoveries increased to
54 out of 745 attempted recoveries.

VI. Related Work

Over the last few years there has been significant interest
in techniques for enhancing system resiliency to driver
failure [4, 12, 18, 17, 5, 9]. Excellent summaries can be found
in the related work sections of two recent publications on the
topic [5, 9]. The main idea in all of these mechanisms is to
isolate drivers from the rest of the system so that a faulty
driver is unlikely to corrupt or crash other parts of the system.
Techniques that do not use virtualization typically require
modifications to the device driver and the OS kernel. Schemes
that use virtualization provide stronger isolation but incur
overhead in performance and memory associated with
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virtualization. However, since virtualization is widely used in
data centers for other reasons [16, 2], there is little additional
overhead for taking advantage of virtualization to provide
resiliency to driver failures.

Most published mechanisms for enhancing resiliency to
driver failure have been applied to NIC drivers. Published
results for network interruptions associated with recovery
from NIC driver failures range from hundreds of milliseconds
to a few seconds [4, 9, 17].

Fraser et al. [4], describe the use of Xen’s IDD
architecture to provide recovery from NIC driver failure.
Recovery is done by restarting the failed driver VM and
reconnecting the guest VM to the new driver VM instance.
The driver VM uses a customized kernel that boots from RAM
disk, only comes up far enough to initialize the network
device, and runs no user processes [19]. The evaluation is
done by causing the driver to perform an illegal memory
access, leading to guaranteed immediate detection and
recorded network outages of around 275ms. Our mechanism
uses primary and warm-spare driver VMs that recover from
most driver failures in less than 10ms. Our evaluation is based
on extensive fault injection and includes an evaluation of a
practical detection mechanism in addition to the recovery
procedure.

VII. Conclusions and Future Work

This paper shows that recovery from NIC driver failures
can be accomplished while maintaining QoS. This is done by
exploiting the capabilities of system virtualization, that is
already in wide (and increasing) use for other reasons.
Virtualization not only enforces strong isolation of the NIC
driver from the rest of the system, but, as shown here, also
provides mechanisms that enable the implementation of
multiple recovery schemes with relatively little effort.

We hav e demonstrated that simple detection mechanisms,
facilitated by virtualization, are able to detect the
overwhelming majority (over 95%) of manifested faults in the
NIC driver. Our driver recovery scheme, based on primary
and warm-spare NetDVMs, is able to recover from 99.9% of
detected driver failures. In most cases (91%), network
interruptions for recovery were in the range of 1-10ms.

While most of our results were based on the E100 100Mb
NIC, we also investigated the applicability of our scheme to
other NICs. With the Realtek 8139 100Mb NIC we obtained
similar results. For both of these 100Mb NICs no driver
modifications were needed. We determined that for 1Gb
NICs, recovery that involves a full NIC reset cannot be used
since the reset itself is very slow. Using the E1000 1Gb NIC,
we showed that fast recovery is achievable with small driver
modifications that allow the reset to be avoided.

Future work will include the evaluation of the recovery
scheme under multiple workload scenarios, using multiple
AppVMs and NetDVMs, and with a greater variety of fault

injection campaigns.
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