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Abstract 
 

As multi-core processors become increasingly 
mainstream, architects have likewise become more 
interested in how best to make use of the computing 
capacity of the CPU, for instance, through multiple 
simultaneous threads or processes of execution with 
OpenMP or MPI. At the same time, the increasingly 
mature and prevailing virtualization technique in 
server consolidation and HPC promotes the 
emergence of a large number of virtual SMP servers. 
Therefore, whether the parallel program can run in the 
virtual machine environment efficiently or not is a  
topic of concern.                                                                                                                                                                                            

Nowadays, virtualization technologies like Xen 
hypervisor [3], VMWare’s ESX server [9] and KVM 
[1] are becoming a prevalent solution for resource 
consolidation, power reduction, and to deal with bursty 
application behaviors. Amazon’s Elastic Compute 
Cloud (EC2) [2], for instance, uses virtualization to 
offer datacenter resources (e.g., clusters or blade 
servers) to applications run by different customers, 
safely providing different kinds of services to diverse 
codes running on the same underlying hardware (e.g., 
trading systems jointly with software used for financial 
analysis and forecasting). Virtualization has also 
shown to be an effective vehicle for dealing with 
machine failures, to improve application portability, 
and to help debug complex application codes, even to 
build a virtual cluster for HPC [4, 6, 7, and 8]. 

In this paper, we investigate the performance of 
three typical parallel programming paradigms, 
including OpenMP, MPI, and Hybrid of OpenMP and 
MPI in the popular, open-source, Xen virtualization 
system. The results show that the performance of the 
traditional parallel program in Xen VMs is close to it 
in native, non-virtualized environment, if there is little 
communication or synchronization between threads or 
processes. In most cases, without excessive IO access, 
we can get an ideal speedup in a SMP VM or virtual 
cluster, which is close to linearity when the total 
virtual CPUs (vCPUs) number is not larger than the 
number of Physical CPUs (pCPUs). And the pure MPI 
implementation shows the best scalability and stability 
in virtual machine environment compared with the 
other two paradigms. 
 
1. Introduction 
 

In the computing space, virtualization is defined as 
an environment in which multiple Operating Systems 
(OS) run on a single physical machine. Each OS runs 
in its own partition, or Virtual Machine (VM). This is 
implemented by inserting an additional software layer 
between the hardware and the OS, called the Virtual 

Machine Monitor (VMM). The VMM schedules the 
guest OSs and manages the hardware resources in 
much the same way that an OS manages the execution 
of applications. 

Both in business consolidation and HPC clusters, 
with the popularity of multi-core processors, parallel 
programming seems more and more significant. 
Developers began to change the code structure into 
what can be parallel executed, to meet the change of 
processors’ structure. So, today, the concurrency 
performance is another crucial indicator for Virtual 
Machine. We found that, with some special 
configuration, virtual Machine (VM) can not only 
utilize thread-level parallelism through OpenMP or 
POSIX, but also implement the inter-VM parallelism 
through MPI or PVM. We even can deploy a hybrid 
parallel programming paradigm (combined with 
OpenMP and MPI) on a virtual SMP cluster in one 
multi-core processor server with Virtual Machine 
Monitor (VMM). However, very few HPC and large-
scale parallel applications are currently running in a 
virtualized environment due to the performance 
overhead of virtualization. This paper aims at 
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evaluating the performance of different parallel 
application in virtual machine environment, mainly in 
one node with a multi-core processor, not the 
performance of HPC in the cluster. In another words, I 
hope to find the overhead of VM in parallel 
programming in multi-core platform. For example, 
usually the total number of virtual CPUs (vCPUs) in 
the virtualized system is larger than the number of 
physical CPUs (pCPUs), and the schedule module in 
the VMM maps vCPUs of virtual machines into 
pCPUs in a time-share manner. So when the workload 
in the VM is the concurrent application such as 
multithreaded programs or parallel programs with the 
synchronization operation or much communication, 
these existing vCPU scheduling methods may 
deteriorate the performance. 

 This paper contributes experimental insights and 
measurements to better understand the effects of 
resource sharing on the performance of parallel 
programming. Specifically, for one or multiple virtual 
machines running on a multi-core platform, we 
evaluated the performance of three mainstream parallel 
programming paradigms. Stated more precisely, using 
a standard x86-based quad-core computer and the Xen 
hypervisor, we evaluate the efficiency of OpenMP, 
MPI and the hybrid paradigms respectively. The 
purpose is (1) to understand the performance 
implication and overheads of supporting multiple VMs 
on virtualized multi-core platforms; (2) to explore the 
performance implication of different parallelism 
programming paradigm in virtual machine 
environment. 

The rest of the paper is organized as follows. In 
section 2 we illustrate the architecture of Xen VMM 
and analyze its problem for parallel programming. In 
Section 3 we describe our testing environment and 
methodology. Section 4 discusses the experimental 
results gathered from various benchmark. Section 5 
touches upon related work. Finally, in Section 6 we 
summarize and conclude. 
 
2. Problem and Analysis of Parallel 
programming in VM 
 

In this section, we firstly describe the general 
virtual machine architecture of Xen VMM, and then 
give a typical vCPU scheduling scenario to describe 
the vCPU scheduling problem for some parallel 
programs in the VM envrionment.  

 
2.1 Overview of the Xen Virtual Machine 
Monitor 
 

Xen is a popular high performance VMM originally 
developed at the University of Cambridge. It uses 
paravirtualization [11] (can also support HVM with 
hardware virtualization such as Intel-VT [12] or AMD-
V [13]), which requires that the host operating systems 
be explicitly ported to the Xen architecture, but brings 
higher performance. However, Xen does not require 
changes to the application binary interface (ABI), so 
existing user applications can run without any 
modification. 

 

 
Figure 1. The structure of the Xen hypervisor, hosting 

three xenoLinux operating systems 
 

Figure 1 illustrates the structure of a physical 
machine running Xen. The Xen hypervisor (the VMM) 
is at the lowest level and has direct access to the 
hardware. The hypervisor is running in the most 
privileged processor level. Above the hypervisor are 
the Xen domains (VMs). Guest OSes running in guest 
domains (User Domain or DomainU, DomU) are 
prevented from directly executing privileged processor 
instructions. A special domain called Domain0 (or 
Dom0), which is created at boot time, is allowed to 
access the control interface provided by the hypervisor 
and performs the tasks to create, terminate or migrate 
other guest domains  through the control interfaces. 

In Xen, domains communicate with each other 
through shared pages and event channels, which 
provide an asynchronous notification mechanism 
between domains. A “send” operation on one side of 
the event channel will cause an event to be received by 
the destination domain, which may in turn cause an 
interrupt. If a domain wants to send data to another, the 
typical scheme is for a source domain to grant access 
to local memory pages to the destination domain and 
then send a notification event. Then, these shared 
pages are used to transfer data. 
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Due to the special I/O mechanism of Xen, as the 
increase of total communication size in Xen, the 
burden in domain 0 is more and more heavy. This is 
one of the main bottlenecks of Xen for parallel 
programs, especially for the communication-sensitive 
programs. 
 
2.2 Problem Scenario for parallel program 
 

There are four processors in a SMP virtual machine, 
on which a thread of a multithreaded program is 
running respectively, and the unit time of CPU 
scheduling is a slot. The weight of the VM is 3/10, and 
there is a synchronization operation between threads at 
the end of each step, and the length of the step is equal 
to the length of the slot. This scenario can be 
abstracted from the multithreaded program or the 
parallel program. 

 

 
Figure 2. The scenario of Credit schedule in VM 

 
There exist three kinds of scheduling strategies in 

Xen, BVT, SEDF and Credit [10]. The last one is the 
default scheduler in Xen. For Credit scheduler, it is 
that each virtual CPU is asynchronously assigned to 
the physical CPU in order to maximize the 
throughput, while guaranteeing the CPU fairness 
according to the weight. However, this strategy will 
deteriorate the performance when the workload is a 
concurrent application. A possible scheduling 
sequence of the multithreaded program by this 
scheduling strategy is shown as Figure 2, the 
multithreaded application only completes the 2 steps 
in the length of the 10 slots, while there are 4 slots of 
CPU time to be wasted for the synchronization. And 
the more synchronization, the more performance loss 
for the parallel programs. 

 
3. Testing Environment and Methodology 
 

Our experimental hardware platform is a Dell 
OPTIPLEX 755 server, with an Intel quad-core 
processor at 2.4GHZ. Each core has 32KB private data 
and instruction L1 cache; every two core shared 4MB 
L2 cache. The server has 4GB of RAM and a 250 GB 
SCSI hard disk with DMA enabled. 

We perform our experiments by repeatedly 
executing the benchmarks and collecting the 
performance data. We use K-best measurement schema 
proposed by Randal E. Bryant and David R. O’ 
Hallaron to collect the result from benchmarks, with K 
= 10, ε= 2%,  M = 100. More information about the 
K-best measurement method and the formulation we 
use can be found in [5]. 

 
3.1. Host OS and Guest OS 
 

In my experiment, the server is running the 
OpenSUSE-11.0 (paravirtualized 2.6.25 SMP kernel) 
in Dom0 with the Xen 3.2 hypervisor. We use the 
credit scheduler which is set default in Xen3.0 or latter 
version to schedule the VCPUs of VM. The guest OS 
in DomU are also OpenSUSE-11.0 (2.6.25 SMP kernel) 
with all unnecessary services removed. Each DomU is 
allocated 2 VCPU, 256MB of RAM, 8GB Disk and 
use bridge network interface to interconnect with 
Dom0 and other DomUs.  
 
3.2 Benchmark 
 

We overview the benchmarks that we use in this 
empirical investigation in Table 1.The benchmarks set 
consists of the widely used complicated and simple 
parallel applications. We employ the same benchmark 
binaries for all operating system configurations. 
 
Benchmark 
Category Code Name Problem 

Size 
What it 

measures? 
micro- 

benchmark
Stream  Memory 

bandwidths 
LU in 
NPB3.3-OMP Class A 

BT in 
NPB3.3-OMP Class A 

LU-MZ in 
NPB3.3-MZ Class A 

BT-MZ in 
NPB3.3-MZ Class A 

BT in 
NPB3.3-MPI Class A  

LU in 
NPB3.3-MPI Class A 

macro- 
benchmark

CPI 29 

Total time (s) 
and millions of 
operations per 
second (Mop) 

Table 1. Benchmark Overview 
 

The STREAM benchmark [18] is a simple synthetic 
benchmark program that measures sustainable memory 
bandwidth and the corresponding computation rate for 
simple vector kernels. 

We use a subset of the NAS Parallel Benchmarks as 
macro-benchmark for testing. NPB consists of a 
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variety of tests which can be run on a number of 
datasets of different sizes. There are 6 classes of 
problem size, S (used only for testing), W, and A-D, 
which are strictly increasing in size. We chose to use 
problem class A for our tests. Hereon, we only make a 
brief introduction of the subset of NPB that we used. 
More detailed descriptions of the various algorithms 
used in NPB are given in [14].  

BT: Block Tri-diagonal. It is a solution of block tri-
diagonal equations with a (5 x 5) block size, which 
mainly aims to test the balance of the computation with 
non-continuous point-to-point long memory access 
message-oriented communications, but not sensitive to 
communication delay very much. 

LU: Lower-Upper Gauss-Seidel. This is a sample 
application, designed to test a wider variety of 
hardware features than the above benchmarks. Its 
communication message size is only about 40 Bytes. 

What’s more, we use another simple testing 
program CPI from Argonne National Laboratory, 
using Regular Polygon Approximation to compute the 
value of Pi, with MPI version respectively, intending 
to test the overhead of virtual machine on parallel 
programs. It has little communication between 
different processes. 

 
4. Benchmark results and analysis 
 

In this section we analyze the result collected from 
different benchmark application, explore the overhead 
of virtual machine environment, and evaluate the 
parallelism performance and the efficiency of OpenMP, 
MPI and Hybrid of them in Xen VM environment. 

 
4.1. Simple parallel program 

 
Firstly, we compare the performance of a simple 

testing parallel program, written in C language, from 
Argonne National Laboratory in the virtual machine 
with it in the native computer. This test aims at 
evaluating the performance of parallel program with 
little communication and synchronization between 
threads or processes. 

The tests are conducted in one or multiple VMs 
(DomU) with the same configuration. The compiler is 
gcc4.3, and MPI environment is MPICH2, a widely 
used MPI implementation. In order to compare the 
thread parallelism in DomU with native machine, we 
change the OpenMP thread number through setting the 
OMP_NUM_THREADS environment variable in 
native machine. But in DomU we only change the 
vCPU number without setting 
OMP_NUM_THREADS environment variable, 

making the OpenMP thread number equal to the vCPU 
number. And the vCPU number is not limited by the 
pCPU number in native machine. 
 

Running Time of CPI with OpenMP
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Figure 3. Running time of CPI with OpenMP 

 
The graph in Figure 3 shows that the efficiency of 

OpenMP nearly equals both in virtual machine and 
native machine. OpenMP can still take the advantages 
of SMP multi-processor, no matter whether it is virtual 
SMP system or not, using multi-threaded to improve 
the computing speed of parallel program. 

We use the Oprofile, a system-wide profiler tool for 
Linux system, to analyze the CPI code. We find that 
the proportion of the program which must be serial is 
less than 0.01%. So, according to Amdahl's law as 
following: 

1
(1 ) /

Speedup
S S

=
+ − P

  , S < 0.0001, P = 4 

The most high speedup value we can get is 4 if not 
consider about other overhead in system. 
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Figure 4. Speedup of OpenMP  

 
The Figure 4 shows that CPI program using 

OpenMP get an ideal speedup value in DomU. The 
speedup value in DomU is slightly smaller than in 
native machine. Even the speedup value is still 
increasing when the thread number exceeds the 
number of pCPU of native machine, although the 
specification of Xen tells that it will cause significant 
performance decline with more VCPU than PCPU. In 
my experiment the speedup value finally reaches the 
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upper limit near to 3.7 when the thread number is 
equal to 7 and 8. After all, only 4 threads can truly 
concurrently execute in native machine. 

We also evaluate the CPI with Message Passing 
Library (MPI) implementation. The MPI environment 
we use is MPICH2, a portable implementation of MPI 
from Argonne National Laboratory. We respectively 
make the test in single VM, in a virtual SMP cluster 
with virtual nodes in one physical node communicating 
through ssh with each other, and in native. We firstly 
present the results from the testing in one VM, a 
virtual cluster with 4 VM nodes, and native machine. 
In the tested VM, we change the VCPU number from 1 
to 8, and set the MPI process number to be equal to the 
VCPU number every time. 

 
Running time of CPI with MPI
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Figure 5. Running Time of CPI with MPICH2 in one 
VM, Virtual Cluster with 4 virtual nodes and Native 

Machine  (in the case that running CPI in one VM, MPI 
process number = vCPU number) 

 
Figure 5 shows that the running time of the program 

in single VM, virtual cluster, and native machine have 
almost no difference. And when the Process number is 
higher than 4, that is the PCPU number, the program’s 
running time has not change any more in all three type 
of environment. But the final running time of lower 
limit is apparently lower than it without parallel 
executing. 

Similar to the CPI program with OpenMP 
implementation, the proportion of this code can not be 
made parallel is less than 0.01% as well. The ideal 
speedup value for CPI with MPI is near 4. Figure 6 
shows that the running effect in VM is very efficient 
which is close to the effect in native machine and its 
upper limit value is also close to 4. What’s more, from 
the graph, we can know that using MPI can also get an 
almost linear speedup when the process number is less 
than the PCPU number in VM like in native machine.  

To sum up, virtual machine environment only take a 
little impact on the simple computing-sensitive parallel 
application with little communication between threads 
or processes. This is mainly due to the 
paravirtualization technology adopted in Xen, which is 
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Figure 6 Speedup of MPI  

(MPI process number = vcpu number of the VM, when 
running CPI in one VM) 

 
detailed in [11]. With paravirtualization, running 
parallel program on much more vCPU than pCPU in 
single or multiple VMs, is effective without the 
noticeable performance degradation, despite the fact 
that vCPU needs some extra overhead to map to 
physical cups when executing a thread or process. 
However, in concurrent program (such as scientific 
computing, etc.), several threads (or processes) not 
only execute parallel, but also need for mutual 
synchronization. So, in some case, the asynchronous 
vCPU scheduling, used in most VMM, will result in 
performance decrease for concurrent programs [20]. 
 
4.2. Complex parallel program 
 

In this section, we explore the performance of three 
typical parallel programming paradigms through 
running a set of benchmarks from NASA Parallel 
Benchmark (NPB), which are more complex than CPI 
and with more communication and synchronization. 

Firstly, we evaluate the performance of OpenMP 
implementation in NBP. We run the two application, 
BT and LU with OpenMP implementation, 
respectively in native and VM, and we set the 
environment variable OMP_NUM_THREADS which 
decide the active threads number in the application 
from 1 to 7. 
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Figure 7 OpenMP test with NPB-OMP 
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From Figure 7 and Figure 8 we can see that, the 
running time of BT in VM is approximate to in native, 
no matter whether the number of active thread is less 
than the pCPU or not. And the performance is not 
decrease very much when the thread number is higher 
than pCPU. However, the performance of LU decrease 
dramatically when the active thread number is over 4, 
the pCPU number. And the performance in VM 
decreases a little faster than in native. The reason for 
that is LU use block communication which will cause 
more synchronization between threads or processes. If 
the active thread number is larger than pCPU number, 
it will generate a large of block-waiting for scheduling. 
And the vCPU of VM is scheduled by VMM like the 
thread scheduled by OS. Like shown in Figure 9, the 
threads in VM need two mappings to get the time slice 
of pCPU in native to execute, and this will cause more 
overhead. What’s more, the Credit scheduler will also 
deteriorate the performance, because with the Credit 
scheduler the vCPUs can not be mapped to pCPUs 
simultaneously. So if the total vCPU is more than the 
pCPU, it may extend the block-waiting time of the 
threads or processes in parallel programs. 
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Figure 8 Speedup for OpenMP paradigm in NPB-OMP 
 

 
Figure 9 VCPU Schedule 

 
All in all, the performance of OpenMP in VM is 

near the performance in native. Especially, it can get a 
linear speedup in VM with OpenMP, when the vCPUs 
are less than pCPUs. But it performs not very well for 
some applications sensitive to communication delay, as 
the vCPU number increasing up to over PCPU number. 

Then, we evaluate the performance of MPI and 
Hybrid paradigm with NPB. We create 4 VMs with 
SMP in the server and use them to form a virtual 
cluster. We run BT-MZ and LU-MZ with MPI and 
Hybrid of MPI and OpenMP respectively in the virtual 
cluster. For MPI test, we set the process number to 1, 2, 
4, 8, and 16 respectively, due to the request of NPB 
and the limit of my environment. For Hybrid paradigm, 
we set the process number as the MPI test, and set the 
OMP_NUM_THREADS environment variable to 2 in 
every VM node, enabling each process to be executed 
with 2 threads in every SMP node. 
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Figure 10 Timing comparison of  MPI and Hybrid MPI 
+ OpenMP version of BT-MZ, LU-MZ for the Class A  

 
From Figure 10 and Figure11, we can apparently 

see that MPI paradigm in our virtual Cluster performs 
best, even for the LU application which is sensitive to 
communication delay. And the hybrid OpenMP + MPI 
which can combine the advantage of MPI and 
OpenMP 
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Figure 11 Speedup for MPI and Hybrid Paradigm 
 

in physical SMP cluster [16, 17] does not perform very 
well, especially for LU, because of the limitation of 
OpenMP in virtual machine just like what Figure 6 
reflects. As running time as concerned, hybrid 
paradigm costs less time than MPI, since it can take the 
advantage of the SMP nodes when the process number 
is 1 or 2. But the running time of LU increases 
dramatically after the process number is over 2, 
because the OpenMP need too much time for 
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application sensitive to communication delay in virtual 
machine with more vCPU than pCPU.  

What’s more, we can find that the MPI application 
performs better than the same applications with 
OpenMP, although the applications may be affected 
negatively by the VM environment. Taking Lu for 
example, in the experiment above, it can get more than 
1.5 speedup with MPI implementation; nevertheless 
only get less than 0.5 speedup with OpenMP, when the 
vCPU number is more than 5. Since the performance 
of simple parallel programs with little communication 
or synchronization is very good both with MPI and 
OpenMP, which has been described in section 4.1, a 
possible reason for this phenomenon is that the MPI 
has a better communication ability than OpenMP in 
VM. Due to that within a node, MPI implementations 
such as MPICH2 can also use shared memory to finish 
inter-process communicating like OpenMP does. So 
we would test the memory access difference of MPI 
and OpenMP in Xen VM. 
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Figure 12 Memory bandwidth for OpenMP 
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Figure 13 Memory bandwidth for MPI 

 
From Figure 12 and 13, we can clearly see that the 

memory bandwidth of MPI paradigm is significantly 
larger than OpenMP. Since OpenMP provides thread 
parallelism, and threads don't span processes, the 
memory access of these threads is limited into one 
process level, although the bandwidth is stable with the 
thread number increasing. As we all know, the inter-
thread or inter-process communication is crucial for 

parallel programs, especially for the communication-
sensitive programs. So the parallel programs with MPI 
will perform better in VM environment, due to its 
communication advantage over OpenMP. 
 
5. Related Work 
 

There are many published reports on the 
comparison of different programming paradigms in 
physical cluster. We can only name a few of them. 
Some aspects of hybrid programming on SMP clusters 
are discussed in [17]. An evaluation of multilevel 
parallel programs applicable to shared memory 
computer architectures is given in [16]. In HPC field, 
[19] provides a performance evaluating of the impact 
of Xen on MPI and process execution for HPC systems. 
And, a case for HPC with virtual machine is described 
in [8]. But these researches all focus on the parallel 
performance in cluster, however, this paper mainly 
explore the performance of parallel programs in one 
node with the virtual machine environment. 

For improving the performance of parallel 
computation-intensive workload in the virtual machine 
system, especially with the SMP VM, some researches 
provide the new vCPU scheduler. For example, co-
schedule method in [20] trys to make all vCPU be 
mapped to pCPU simultaneous for the parallel 
programs with much synchronization. However, the 
vCPU number in co-schedule is strict. 
 
6. Conclusions and future work 
 

We have run several implementations of the same 
CFD benchmark code employing different 
parallelization paradigms on a VM or multiple virtual 
SMP nodes. I found that it is not true that more vCPUs 
than pCPUs always make a significantly negative 
impact on the parallel programs in virtual machine 
environment, especially when the communication and 
synchronization between threads or processes is little. 
And the pure MPI paradigm turned out to be the most 
efficient. For the parallel programs which are not 
sensitive to communication delay, the OpenMP and 
Hybrid paradigm have the close performance to MPI, 
no matter whether the vCPU number is higher than the 
pCPU number or not. But for some application 
sensitive to communication delay, taking LU for 
example, the performance of OpenMP and Hybrid 
degrades significantly.  

In this paper, we only test the parallel programs in 
paravirtualization system. We plan to make a similar 
test in virtual machine with the hardware virtualization 
support, such as Intel-VT, AMD-V technique. Further 
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more, we also want to test the parallel performance in 
virtual machine with other vCPU schedule algorisms, 
SEDF for instance, instead of the Credit used in my 
experiments of this paper. What’s more, the other new 
scheduler such as co-schedule method will be also 
considered in the next work. 
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