
Performance Evaluation of Parallel Programming
in Virtual Machine Environment

Cong Xu, Yuebin Bai, Cheng Luo
School of Computer Science

Beihang University, Beijing 100191, P.R.China
xucong2007@cse.buaa.edu.cn

Abstract

As multi-core processors become increasingly
mainstream, architects have likewise become more
interested in how best to make use of the computing
capacity of the CPU, for instance, through multiple
simultaneous threads or processes of execution with
OpenMP or MPI. At the same time, the increasingly
mature and prevailing virtualization technique in
server consolidation and HPC promotes the
emergence of a large number of virtual SMP servers.
Therefore, whether the parallel program can run in the
virtual machine environment efficiently or not is a
topic of concern.

Nowadays, virtualization technologies like Xen
hypervisor [3], VMWare’s ESX server [9] and KVM
[1] are becoming a prevalent solution for resource
consolidation, power reduction, and to deal with bursty
application behaviors. Amazon’s Elastic Compute
Cloud (EC2) [2], for instance, uses virtualization to
offer datacenter resources (e.g., clusters or blade
servers) to applications run by different customers,
safely providing different kinds of services to diverse
codes running on the same underlying hardware (e.g.,
trading systems jointly with software used for financial
analysis and forecasting). Virtualization has also
shown to be an effective vehicle for dealing with
machine failures, to improve application portability,
and to help debug complex application codes, even to
build a virtual cluster for HPC [4, 6, 7, and 8].

In this paper, we investigate the performance of
three typical parallel programming paradigms,
including OpenMP, MPI, and Hybrid of OpenMP and
MPI in the popular, open-source, Xen virtualization
system. The results show that the performance of the
traditional parallel program in Xen VMs is close to it
in native, non-virtualized environment, if there is little
communication or synchronization between threads or
processes. In most cases, without excessive IO access,
we can get an ideal speedup in a SMP VM or virtual
cluster, which is close to linearity when the total
virtual CPUs (vCPUs) number is not larger than the
number of Physical CPUs (pCPUs). And the pure MPI
implementation shows the best scalability and stability
in virtual machine environment compared with the
other two paradigms.

1. Introduction

In the computing space, virtualization is defined as
an environment in which multiple Operating Systems
(OS) run on a single physical machine. Each OS runs
in its own partition, or Virtual Machine (VM). This is
implemented by inserting an additional software layer
between the hardware and the OS, called the Virtual

Machine Monitor (VMM). The VMM schedules the
guest OSs and manages the hardware resources in
much the same way that an OS manages the execution
of applications.

Both in business consolidation and HPC clusters,
with the popularity of multi-core processors, parallel
programming seems more and more significant.
Developers began to change the code structure into
what can be parallel executed, to meet the change of
processors’ structure. So, today, the concurrency
performance is another crucial indicator for Virtual
Machine. We found that, with some special
configuration, virtual Machine (VM) can not only
utilize thread-level parallelism through OpenMP or
POSIX, but also implement the inter-VM parallelism
through MPI or PVM. We even can deploy a hybrid
parallel programming paradigm (combined with
OpenMP and MPI) on a virtual SMP cluster in one
multi-core processor server with Virtual Machine
Monitor (VMM). However, very few HPC and large-
scale parallel applications are currently running in a
virtualized environment due to the performance
overhead of virtualization. This paper aims at

2009 Sixth IFIP International Conference on Network and Parallel Computing

978-0-7695-3837-2/09 $25.00 © 2009 IEEE

DOI 10.1109/NPC.2009.22

140

2009 Sixth IFIP International Conference on Network and Parallel Computing

978-0-7695-3837-2/09 $26.00 © 2009 IEEE

DOI 10.1109/NPC.2009.22

140

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:24:59 UTC from IEEE Xplore. Restrictions apply.

evaluating the performance of different parallel
application in virtual machine environment, mainly in
one node with a multi-core processor, not the
performance of HPC in the cluster. In another words, I
hope to find the overhead of VM in parallel
programming in multi-core platform. For example,
usually the total number of virtual CPUs (vCPUs) in
the virtualized system is larger than the number of
physical CPUs (pCPUs), and the schedule module in
the VMM maps vCPUs of virtual machines into
pCPUs in a time-share manner. So when the workload
in the VM is the concurrent application such as
multithreaded programs or parallel programs with the
synchronization operation or much communication,
these existing vCPU scheduling methods may
deteriorate the performance.

 This paper contributes experimental insights and
measurements to better understand the effects of
resource sharing on the performance of parallel
programming. Specifically, for one or multiple virtual
machines running on a multi-core platform, we
evaluated the performance of three mainstream parallel
programming paradigms. Stated more precisely, using
a standard x86-based quad-core computer and the Xen
hypervisor, we evaluate the efficiency of OpenMP,
MPI and the hybrid paradigms respectively. The
purpose is (1) to understand the performance
implication and overheads of supporting multiple VMs
on virtualized multi-core platforms; (2) to explore the
performance implication of different parallelism
programming paradigm in virtual machine
environment.

The rest of the paper is organized as follows. In
section 2 we illustrate the architecture of Xen VMM
and analyze its problem for parallel programming. In
Section 3 we describe our testing environment and
methodology. Section 4 discusses the experimental
results gathered from various benchmark. Section 5
touches upon related work. Finally, in Section 6 we
summarize and conclude.

2. Problem and Analysis of Parallel
programming in VM

In this section, we firstly describe the general
virtual machine architecture of Xen VMM, and then
give a typical vCPU scheduling scenario to describe
the vCPU scheduling problem for some parallel
programs in the VM envrionment.

2.1 Overview of the Xen Virtual Machine
Monitor

Xen is a popular high performance VMM originally
developed at the University of Cambridge. It uses
paravirtualization [11] (can also support HVM with
hardware virtualization such as Intel-VT [12] or AMD-
V [13]), which requires that the host operating systems
be explicitly ported to the Xen architecture, but brings
higher performance. However, Xen does not require
changes to the application binary interface (ABI), so
existing user applications can run without any
modification.

Figure 1. The structure of the Xen hypervisor, hosting

three xenoLinux operating systems

Figure 1 illustrates the structure of a physical
machine running Xen. The Xen hypervisor (the VMM)
is at the lowest level and has direct access to the
hardware. The hypervisor is running in the most
privileged processor level. Above the hypervisor are
the Xen domains (VMs). Guest OSes running in guest
domains (User Domain or DomainU, DomU) are
prevented from directly executing privileged processor
instructions. A special domain called Domain0 (or
Dom0), which is created at boot time, is allowed to
access the control interface provided by the hypervisor
and performs the tasks to create, terminate or migrate
other guest domains through the control interfaces.

In Xen, domains communicate with each other
through shared pages and event channels, which
provide an asynchronous notification mechanism
between domains. A “send” operation on one side of
the event channel will cause an event to be received by
the destination domain, which may in turn cause an
interrupt. If a domain wants to send data to another, the
typical scheme is for a source domain to grant access
to local memory pages to the destination domain and
then send a notification event. Then, these shared
pages are used to transfer data.

141141

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:24:59 UTC from IEEE Xplore. Restrictions apply.

Due to the special I/O mechanism of Xen, as the
increase of total communication size in Xen, the
burden in domain 0 is more and more heavy. This is
one of the main bottlenecks of Xen for parallel
programs, especially for the communication-sensitive
programs.

2.2 Problem Scenario for parallel program

There are four processors in a SMP virtual machine,
on which a thread of a multithreaded program is
running respectively, and the unit time of CPU
scheduling is a slot. The weight of the VM is 3/10, and
there is a synchronization operation between threads at
the end of each step, and the length of the step is equal
to the length of the slot. This scenario can be
abstracted from the multithreaded program or the
parallel program.

Figure 2. The scenario of Credit schedule in VM

There exist three kinds of scheduling strategies in

Xen, BVT, SEDF and Credit [10]. The last one is the
default scheduler in Xen. For Credit scheduler, it is
that each virtual CPU is asynchronously assigned to
the physical CPU in order to maximize the
throughput, while guaranteeing the CPU fairness
according to the weight. However, this strategy will
deteriorate the performance when the workload is a
concurrent application. A possible scheduling
sequence of the multithreaded program by this
scheduling strategy is shown as Figure 2, the
multithreaded application only completes the 2 steps
in the length of the 10 slots, while there are 4 slots of
CPU time to be wasted for the synchronization. And
the more synchronization, the more performance loss
for the parallel programs.

3. Testing Environment and Methodology

Our experimental hardware platform is a Dell
OPTIPLEX 755 server, with an Intel quad-core
processor at 2.4GHZ. Each core has 32KB private data
and instruction L1 cache; every two core shared 4MB
L2 cache. The server has 4GB of RAM and a 250 GB
SCSI hard disk with DMA enabled.

We perform our experiments by repeatedly
executing the benchmarks and collecting the
performance data. We use K-best measurement schema
proposed by Randal E. Bryant and David R. O’
Hallaron to collect the result from benchmarks, with K
= 10, ε= 2%, M = 100. More information about the
K-best measurement method and the formulation we
use can be found in [5].

3.1. Host OS and Guest OS

In my experiment, the server is running the
OpenSUSE-11.0 (paravirtualized 2.6.25 SMP kernel)
in Dom0 with the Xen 3.2 hypervisor. We use the
credit scheduler which is set default in Xen3.0 or latter
version to schedule the VCPUs of VM. The guest OS
in DomU are also OpenSUSE-11.0 (2.6.25 SMP kernel)
with all unnecessary services removed. Each DomU is
allocated 2 VCPU, 256MB of RAM, 8GB Disk and
use bridge network interface to interconnect with
Dom0 and other DomUs.

3.2 Benchmark

We overview the benchmarks that we use in this
empirical investigation in Table 1.The benchmarks set
consists of the widely used complicated and simple
parallel applications. We employ the same benchmark
binaries for all operating system configurations.

Benchmark
Category Code Name Problem

Size
What it

measures?
micro-

benchmark
Stream Memory

bandwidths
LU in
NPB3.3-OMP Class A

BT in
NPB3.3-OMP Class A

LU-MZ in
NPB3.3-MZ Class A

BT-MZ in
NPB3.3-MZ Class A

BT in
NPB3.3-MPI Class A

LU in
NPB3.3-MPI Class A

macro-
benchmark

CPI 29

Total time (s)
and millions of
operations per
second (Mop)

Table 1. Benchmark Overview

The STREAM benchmark [18] is a simple synthetic
benchmark program that measures sustainable memory
bandwidth and the corresponding computation rate for
simple vector kernels.

We use a subset of the NAS Parallel Benchmarks as
macro-benchmark for testing. NPB consists of a

142142

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:24:59 UTC from IEEE Xplore. Restrictions apply.

variety of tests which can be run on a number of
datasets of different sizes. There are 6 classes of
problem size, S (used only for testing), W, and A-D,
which are strictly increasing in size. We chose to use
problem class A for our tests. Hereon, we only make a
brief introduction of the subset of NPB that we used.
More detailed descriptions of the various algorithms
used in NPB are given in [14].

BT: Block Tri-diagonal. It is a solution of block tri-
diagonal equations with a (5 x 5) block size, which
mainly aims to test the balance of the computation with
non-continuous point-to-point long memory access
message-oriented communications, but not sensitive to
communication delay very much.

LU: Lower-Upper Gauss-Seidel. This is a sample
application, designed to test a wider variety of
hardware features than the above benchmarks. Its
communication message size is only about 40 Bytes.

What’s more, we use another simple testing
program CPI from Argonne National Laboratory,
using Regular Polygon Approximation to compute the
value of Pi, with MPI version respectively, intending
to test the overhead of virtual machine on parallel
programs. It has little communication between
different processes.

4. Benchmark results and analysis

In this section we analyze the result collected from
different benchmark application, explore the overhead
of virtual machine environment, and evaluate the
parallelism performance and the efficiency of OpenMP,
MPI and Hybrid of them in Xen VM environment.

4.1. Simple parallel program

Firstly, we compare the performance of a simple

testing parallel program, written in C language, from
Argonne National Laboratory in the virtual machine
with it in the native computer. This test aims at
evaluating the performance of parallel program with
little communication and synchronization between
threads or processes.

The tests are conducted in one or multiple VMs
(DomU) with the same configuration. The compiler is
gcc4.3, and MPI environment is MPICH2, a widely
used MPI implementation. In order to compare the
thread parallelism in DomU with native machine, we
change the OpenMP thread number through setting the
OMP_NUM_THREADS environment variable in
native machine. But in DomU we only change the
vCPU number without setting
OMP_NUM_THREADS environment variable,

making the OpenMP thread number equal to the vCPU
number. And the vCPU number is not limited by the
pCPU number in native machine.

Running Time of CPI with OpenMP

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8

Number of Threads

T
im
e
 i
n
 s
e
c
on
d

VM

Native

Figure 3. Running time of CPI with OpenMP

The graph in Figure 3 shows that the efficiency of

OpenMP nearly equals both in virtual machine and
native machine. OpenMP can still take the advantages
of SMP multi-processor, no matter whether it is virtual
SMP system or not, using multi-threaded to improve
the computing speed of parallel program.

We use the Oprofile, a system-wide profiler tool for
Linux system, to analyze the CPI code. We find that
the proportion of the program which must be serial is
less than 0.01%. So, according to Amdahl's law as
following:

1
(1) /

Speedup
S S

=
+ − P

 , S < 0.0001, P = 4

The most high speedup value we can get is 4 if not
consider about other overhead in system.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8
Number of Threads

Sp
ee
du

p

VM

Native

Figure 4. Speedup of OpenMP

The Figure 4 shows that CPI program using

OpenMP get an ideal speedup value in DomU. The
speedup value in DomU is slightly smaller than in
native machine. Even the speedup value is still
increasing when the thread number exceeds the
number of pCPU of native machine, although the
specification of Xen tells that it will cause significant
performance decline with more VCPU than PCPU. In
my experiment the speedup value finally reaches the

143143

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:24:59 UTC from IEEE Xplore. Restrictions apply.

upper limit near to 3.7 when the thread number is
equal to 7 and 8. After all, only 4 threads can truly
concurrently execute in native machine.

We also evaluate the CPI with Message Passing
Library (MPI) implementation. The MPI environment
we use is MPICH2, a portable implementation of MPI
from Argonne National Laboratory. We respectively
make the test in single VM, in a virtual SMP cluster
with virtual nodes in one physical node communicating
through ssh with each other, and in native. We firstly
present the results from the testing in one VM, a
virtual cluster with 4 VM nodes, and native machine.
In the tested VM, we change the VCPU number from 1
to 8, and set the MPI process number to be equal to the
VCPU number every time.

Running time of CPI with MPI

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

Nunber of Processes

T
i
m
e

i
n

s
e
c
o
n
d

one VM

virtual cluster

Native

Figure 5. Running Time of CPI with MPICH2 in one
VM, Virtual Cluster with 4 virtual nodes and Native

Machine (in the case that running CPI in one VM, MPI
process number = vCPU number)

Figure 5 shows that the running time of the program

in single VM, virtual cluster, and native machine have
almost no difference. And when the Process number is
higher than 4, that is the PCPU number, the program’s
running time has not change any more in all three type
of environment. But the final running time of lower
limit is apparently lower than it without parallel
executing.

Similar to the CPI program with OpenMP
implementation, the proportion of this code can not be
made parallel is less than 0.01% as well. The ideal
speedup value for CPI with MPI is near 4. Figure 6
shows that the running effect in VM is very efficient
which is close to the effect in native machine and its
upper limit value is also close to 4. What’s more, from
the graph, we can know that using MPI can also get an
almost linear speedup when the process number is less
than the PCPU number in VM like in native machine.

To sum up, virtual machine environment only take a
little impact on the simple computing-sensitive parallel
application with little communication between threads
or processes. This is mainly due to the
paravirtualization technology adopted in Xen, which is

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8

Number of Processes

S
p
e
e
d
u
p

one VM

Virtual Cluster

Native

Figure 6 Speedup of MPI

(MPI process number = vcpu number of the VM, when
running CPI in one VM)

detailed in [11]. With paravirtualization, running
parallel program on much more vCPU than pCPU in
single or multiple VMs, is effective without the
noticeable performance degradation, despite the fact
that vCPU needs some extra overhead to map to
physical cups when executing a thread or process.
However, in concurrent program (such as scientific
computing, etc.), several threads (or processes) not
only execute parallel, but also need for mutual
synchronization. So, in some case, the asynchronous
vCPU scheduling, used in most VMM, will result in
performance decrease for concurrent programs [20].

4.2. Complex parallel program

In this section, we explore the performance of three
typical parallel programming paradigms through
running a set of benchmarks from NASA Parallel
Benchmark (NPB), which are more complex than CPI
and with more communication and synchronization.

Firstly, we evaluate the performance of OpenMP
implementation in NBP. We run the two application,
BT and LU with OpenMP implementation,
respectively in native and VM, and we set the
environment variable OMP_NUM_THREADS which
decide the active threads number in the application
from 1 to 7.

Running Time of BT and LU

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7
Number of Threads

T
i
m
e

i
n

s
e
c
o
n
d
s

BT in Native

BT in VM

LU in Native

LU in VM

Figure 7 OpenMP test with NPB-OMP

144144

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:24:59 UTC from IEEE Xplore. Restrictions apply.

From Figure 7 and Figure 8 we can see that, the
running time of BT in VM is approximate to in native,
no matter whether the number of active thread is less
than the pCPU or not. And the performance is not
decrease very much when the thread number is higher
than pCPU. However, the performance of LU decrease
dramatically when the active thread number is over 4,
the pCPU number. And the performance in VM
decreases a little faster than in native. The reason for
that is LU use block communication which will cause
more synchronization between threads or processes. If
the active thread number is larger than pCPU number,
it will generate a large of block-waiting for scheduling.
And the vCPU of VM is scheduled by VMM like the
thread scheduled by OS. Like shown in Figure 9, the
threads in VM need two mappings to get the time slice
of pCPU in native to execute, and this will cause more
overhead. What’s more, the Credit scheduler will also
deteriorate the performance, because with the Credit
scheduler the vCPUs can not be mapped to pCPUs
simultaneously. So if the total vCPU is more than the
pCPU, it may extend the block-waiting time of the
threads or processes in parallel programs.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7

Number of Threads

S
p
e
e
d
u
p

BT in Native

BT in VM

LU in Native

LU in VM

Figure 8 Speedup for OpenMP paradigm in NPB-OMP

Figure 9 VCPU Schedule

All in all, the performance of OpenMP in VM is

near the performance in native. Especially, it can get a
linear speedup in VM with OpenMP, when the vCPUs
are less than pCPUs. But it performs not very well for
some applications sensitive to communication delay, as
the vCPU number increasing up to over PCPU number.

Then, we evaluate the performance of MPI and
Hybrid paradigm with NPB. We create 4 VMs with
SMP in the server and use them to form a virtual
cluster. We run BT-MZ and LU-MZ with MPI and
Hybrid of MPI and OpenMP respectively in the virtual
cluster. For MPI test, we set the process number to 1, 2,
4, 8, and 16 respectively, due to the request of NPB
and the limit of my environment. For Hybrid paradigm,
we set the process number as the MPI test, and set the
OMP_NUM_THREADS environment variable to 2 in
every VM node, enabling each process to be executed
with 2 threads in every SMP node.

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 16

Number of Processes
T
i
m
e
i
n

s
e
co
n
d
s

BT with MPI

BT with Hybrid

LU with MPI

LU with Hybrid

Figure 10 Timing comparison of MPI and Hybrid MPI
+ OpenMP version of BT-MZ, LU-MZ for the Class A

From Figure 10 and Figure11, we can apparently

see that MPI paradigm in our virtual Cluster performs
best, even for the LU application which is sensitive to
communication delay. And the hybrid OpenMP + MPI
which can combine the advantage of MPI and
OpenMP

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16

Number of Processes

S
pe
e
du
p

BT with MPI

BT with Hybrid

LU with MPI

LU with Hybrid

Figure 11 Speedup for MPI and Hybrid Paradigm

in physical SMP cluster [16, 17] does not perform very
well, especially for LU, because of the limitation of
OpenMP in virtual machine just like what Figure 6
reflects. As running time as concerned, hybrid
paradigm costs less time than MPI, since it can take the
advantage of the SMP nodes when the process number
is 1 or 2. But the running time of LU increases
dramatically after the process number is over 2,
because the OpenMP need too much time for

145145

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:24:59 UTC from IEEE Xplore. Restrictions apply.

application sensitive to communication delay in virtual
machine with more vCPU than pCPU.

What’s more, we can find that the MPI application
performs better than the same applications with
OpenMP, although the applications may be affected
negatively by the VM environment. Taking Lu for
example, in the experiment above, it can get more than
1.5 speedup with MPI implementation; nevertheless
only get less than 0.5 speedup with OpenMP, when the
vCPU number is more than 5. Since the performance
of simple parallel programs with little communication
or synchronization is very good both with MPI and
OpenMP, which has been described in section 4.1, a
possible reason for this phenomenon is that the MPI
has a better communication ability than OpenMP in
VM. Due to that within a node, MPI implementations
such as MPICH2 can also use shared memory to finish
inter-process communicating like OpenMP does. So
we would test the memory access difference of MPI
and OpenMP in Xen VM.

3850

3900

3950

4000

4050

4100

4150

4200

4250

1 2 4 6 8

Thread Number

Ba
n
dw
i
dt
h
 (
M
B/
s
)

OpenMP in native

OpenMP in vm

Figure 12 Memory bandwidth for OpenMP

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 4 6 8

Process Number

B
a
n
d
w
i
d
t
h

(
M
B
/
s
)

MPI in native

MPI in vm

Figure 13 Memory bandwidth for MPI

From Figure 12 and 13, we can clearly see that the

memory bandwidth of MPI paradigm is significantly
larger than OpenMP. Since OpenMP provides thread
parallelism, and threads don't span processes, the
memory access of these threads is limited into one
process level, although the bandwidth is stable with the
thread number increasing. As we all know, the inter-
thread or inter-process communication is crucial for

parallel programs, especially for the communication-
sensitive programs. So the parallel programs with MPI
will perform better in VM environment, due to its
communication advantage over OpenMP.

5. Related Work

There are many published reports on the
comparison of different programming paradigms in
physical cluster. We can only name a few of them.
Some aspects of hybrid programming on SMP clusters
are discussed in [17]. An evaluation of multilevel
parallel programs applicable to shared memory
computer architectures is given in [16]. In HPC field,
[19] provides a performance evaluating of the impact
of Xen on MPI and process execution for HPC systems.
And, a case for HPC with virtual machine is described
in [8]. But these researches all focus on the parallel
performance in cluster, however, this paper mainly
explore the performance of parallel programs in one
node with the virtual machine environment.

For improving the performance of parallel
computation-intensive workload in the virtual machine
system, especially with the SMP VM, some researches
provide the new vCPU scheduler. For example, co-
schedule method in [20] trys to make all vCPU be
mapped to pCPU simultaneous for the parallel
programs with much synchronization. However, the
vCPU number in co-schedule is strict.

6. Conclusions and future work

We have run several implementations of the same
CFD benchmark code employing different
parallelization paradigms on a VM or multiple virtual
SMP nodes. I found that it is not true that more vCPUs
than pCPUs always make a significantly negative
impact on the parallel programs in virtual machine
environment, especially when the communication and
synchronization between threads or processes is little.
And the pure MPI paradigm turned out to be the most
efficient. For the parallel programs which are not
sensitive to communication delay, the OpenMP and
Hybrid paradigm have the close performance to MPI,
no matter whether the vCPU number is higher than the
pCPU number or not. But for some application
sensitive to communication delay, taking LU for
example, the performance of OpenMP and Hybrid
degrades significantly.

In this paper, we only test the parallel programs in
paravirtualization system. We plan to make a similar
test in virtual machine with the hardware virtualization
support, such as Intel-VT, AMD-V technique. Further

146146

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:24:59 UTC from IEEE Xplore. Restrictions apply.

more, we also want to test the parallel performance in
virtual machine with other vCPU schedule algorisms,
SEDF for instance, instead of the Credit used in my
experiments of this paper. What’s more, the other new
scheduler such as co-schedule method will be also
considered in the next work.

7. Acknowledge

This work is supported by the National Science
Foundation of China under Grant Nos. 90612004 and
60873071. The National High Technology
Development 863 Program of China under Grant
Nos. 2007AA01Z118 and 2008AA01Z410.

8. References

[1] Himanshu Raj, Karsten Schwan. High Performance and
Scalable I/O Virtualization via Self-Virtualized Devices.
HPDC’07, 2007.

[2] Amazon Elastic Compute Cloud (EC2).
aws.amazon.com/ec2.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
Art of Virtualization. In SOSP’2003, 2003.

[4] Lamia Youseff, Rich Wolski, Brent Gorda, and Chandra
Krintz. Paravirtualization for hpc systems. LECTURE
NOTES IN COMPUTER SCIENCE, 2006.

[5] Randal E. Bryant, David R. O’Hallaron. Computer
Systems: A Programmer's Perspective. Published by Prentice
Hall, 2004.

[6] A Gavrilovska, S Kumar, H Raj, K Schwan, V Gupta, R
Nathuji, R Niranjan, A Ranadive, P Saraiya. High-
Performance Hypervisor Architectures:Virtualization in HPC
Systems. HPCVirt’07, 2007.

[7] Adit Ranadive, Mukil Kesavan, Ada Gavrilovska,
Karsten Schwan. Performance Implications of Virtualizing
Multicore Cluster Machines. HPCVirt’08, 2008.

[8] W Huang, JX Liu , B Abali, DK Panda. A Case for High
Performance Computing with Virtual Machines. ICS’06,
2006.

[9] The VMWare ESX Server.
http://www.vmware.com/products/esx/.

[10] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison
of the Three CPU Schedulers in Xen. ACM SIGMETRICS
Performance Evaluation Review, 35(2):42–51, 2007.

[11] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
Performance in the Denali Isolation Kernel. In Proceedings
of the 5th Symposium on Operating Systems Design and
Implementation (OSDI ’02), Dec 2002.

[12] INTEL CORPORATION. Intel Virtualization
Technology Specification for the IA-32 Intel Architecture,
April 2005.

[13] AMD. AMD64 Virtualization Codenamed “Pacifica”
Technology:Secure Virtual Machine Architecture Reference
Manual, May 2005.

[14] R. V. der Wijngaart, NAS Parallel Benchmarks v. 2.4.
NAS Technical Report NAS-02-007, October 2002.

[15] Haoqiang Jin, Barbara Chapman, Lei Huang.
Performance evaluation of a multi-zone application in
different OpenMP approaches. International Journal of
Parallel Programming, Volume 36, Issue 3 (June 2008).

[16] Gabriele Jost, Jesús Labarta, and Judit Gimenez. What
Multilevel Parallel Programs Do When You Are Not
Watching: A Performance Analysis Case StudyComparing
MPI/OpenMP, MLP, and Nested OpenMP. Lecture Notes in
Computer Science, page 29-40, Volume 3349, 2005.

[17] Gabriele Jost, Haoqiang Jin, Dieter an Mey, Ferhat F.
Hatay. Comparing the OpenMP, MPI, and Hybrid
Programming Paradigms on an SMP Cluster. The Fifth
European Workshop on OpenMP (EWOMP03), 2003.

[18] John McCalpin, STREAM: Sustainable Memory
Bandwidth in HPC, http://www.cs.virginia.edu/stream.

[19] Lamia Youseff, Rich Wolski, Brent Gorda, and Chandra
Krintz. Evaluating the Performance Impact of Xen on MPI
and Process Execution For HPC Systems. In Proceedings of
the 2nd International Workshop on Virtualization
Technology in Distributed computing, 2006.

[20] Chuliang Weng, Zhigang Wang, Minglu Li, and Xinda
Lu. The Hybrid Scheduling Framework for Virtual Machine
Systems. In Proceedings of the 5th international conference
on Virtual execution environments (VEE), 2009

147147

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:24:59 UTC from IEEE Xplore. Restrictions apply.

