
Performance Evaluation of the CPU Scheduler in XEN

Xianghua Xu1, Peipei Shan2, Jian Wan, Yucheng Jiang
Grid and Service Computing Lab

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
1xhxu@hdu.edu.cn, 2juzi_7@163.com

Abstract—Virtual machines with advances in software and
architectural support have emerged as the basis for enterprises
to allocate resources recently. One main benefit of virtual
machine is server consolidation. However, flexible and complex
consolidation results in some unpredictable performance
problems and introduces new requirements, such as proper
configurations for scheduler and reasonable arrangements for
services. In this paper, we present a comparative performance
evaluation of several different typical application
consolidations in different configurations of scheduler
parameters (under Credit scheduler) in Xen. We analyze the
impact of the configurations of scheduler and mutual impact
between VMs which run different types of applications,
present proposals for users to adopt an efficient scheduler
configuration in applying virtualization, and offer insight into
the relationship of performance and scheduler parameters to
motivate future innovation in virtualization.

Keywords- scheduling parameters; performance evaluation;
Xen

I. INTRODUCTION
Recent advancements in hardware and software support

for virtualization have made a resurgence period for diverse
uses of virtual machine. The promotion of high performance
of hardware and the urgent need for server consolidation
motivate virtualization technology application. Many
organizations found that lots of servers only run single tasks
with much spare resource. With virtualization, servers could
be consolidated into a single machine in a security
environment. However, service consolidation and flexibility
produce new problems, such as unpredictable application
performance, unfair resource scheduling and isolation for
service, and also introduce new requirements, such as
proper configurations for scheduler and reasonable
arrangements for services.

Xen is an open-source virtual machine monitor, on
account of its open-source and excellent performance, has
been widely adopted by enterprises. As the scheduling
policy in Xen is always borrowed from traditional operating
system, it is bound to cause some unpredictable behaviors
and severe performance problems for processes running in
the VM, particularly, for I/O applications. Just because of
this, network virtualization is not much attracted by those
I/O intensive applications.

While other works studied the fairness of resource
distribution between different types of applications
concurrently running in domains, and the influence made by
VMM scheduling on one type of applications performance,
our study focus on the impact of different scheduler
parameters configurations on different types of services
concurrently executing in different domains, and
demonstrate different arrangements of applications and
effective scheduler parameters configurations can get
improved performance for applications.

The rest of this paper is organized as follows. In section
2, we discuss the related work. Section 3 provides a brief
background introduction. Section 4 describes several
questions motivate us do the work. Section 5 presents the
experimental methodology, and then in Section 6, it
discusses experimental results. Finally, we make a
conclusion in Section 7.

II. RELATED WORK
As mentioned earlier, the fairness of resource distribution

between different types of application concurrently running
in several domains has been studied in [6], using Xen,
Diego Ongaro et al. figured that the fairness for I/O
intensive workloads had not achieved the same level as the
compute intensive workloads, also to a certain extent they
proposed some extensions to VMM scheduling to improve
I/O performance.

Divaker Gupta et al in [7] studied the resource
consumption in the hypervisor on behalf of individual VMs
for I/O processing, and introduced a SEDF-DC scheduler
which derived from SEDF scheduler for Xen, CPU
overhead in driver domain not accounted was significant for
I/O intensive applications.

Ludmila Cherkasova et al in [8] compared three
proportional-share CPU schedulers in Xen, they used a small
suite of benchmarks to analyze the influence of the
scheduling parameters make on the performance of a single
application running in a domain, also did some
measurements in the CPU allocation errors. In contrast, this
paper focus on how different applications in different
domains are impacted by the scheduler parameters, and
particularly the configuration relationship among DomUs
rather than only the relationship between Domain 0 and
domain U.

2008 International Symposium on Information Science and Engieering

978-0-7695-3494-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ISISE.2008.123

68

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:14:01 UTC from IEEE Xplore. Restrictions apply.

III. BACKGROUND

A. VMM
Xen is a Virtual Machine Monitor based on open source,

including two components: hypervisor and driver domain,
the latter is now in domain0 typically. The hypervisor is an
abstract layer between the virtual machines and underlying
physical hardware. Different to the original model [7, 9],
drivers are isolated from hypervisor to become the driver
domain, to control I/O access by the guest domains. Each
virtual machine has a front-end driver, to communicate with
the back-end driver in the driver domain, and then connect to
the physical NIC through an Ethernet bridge.

B. Xen’s schedulers
Xen offers two schedulers schemes currently, SEDF

(Simple Earliest Deadline First) and Credit schedulers.
In the current version schedulers, Credit [5] is the default

scheduler in Xen (since version 3.0) while SEDF is
gradually phased out. Under Credit scheduler, each CPU
manages a run queue of runnable vCPUs. This queue CPU
manages is in ordered by vCPU’s priority which can be in
one of two states: OVER and UNDER. OVER represents
the fair share of the vCPU’s CPU resource has exceeded,
while UNDER is opposite. The scheduler picks the head of
the run queue which is in UNDER state.

Each domain maintains a value of credit, which
determines the state of the priority for the domain. Every
10ms, the scheduler ticks, and then subtracts credits the
domain owns. When a vCPU consumes all its allocated
credits (the value of the credit is negative), the state of its
priority changes into OVER, and then the vCPU can not be
scheduled. Every 30ms, the value of credit each domains
owns is to be accounted again, and all domain will get new
value of credit.

IV. QUESTIONS ABOUT SCHEDULER PARAMETERS

A. From weight to credit
Under Credit scheduler, each domain has two parameters

(weight, cap). The weight determines that the proportional
share of physical CPU time the domain attains, and the cap
represents an upper limit on the CPU time the domain can
consume. A domain whose weight is 512 will get twice as
much CPU as another domain with a weight of 256(default),
whereas the cap is an absolute value, it is expressed in
percentage of one physical CPU. The default value for cap
is 0 which means no upper cap for the domain.

When we set the weight for a domain, it is transmitted to
the value of credit described above in the scheduler
according to the following formula: credit_fair =
(credit_total * weighti + weight_total -1)/weight_total,
where credit_fair is the proportional share of CPU resources,
credit_total is the sum of all domains’ credit (initialized as
300), weight_total is the sum of all domains’ weight, and
weighti is domaini’s weight. More CPU resource will be
allocated to a domain when a bigger value of weight set to a
domain.

B. Impacts of scheduler parameters configurations
In this paper, finding a satisfactory configuration of

scheduler parameters for corresponding applications running
in a single domain, or different types of applications running
in multiple domains is the main motivation. For example,
when an I/O intensive application runs in a domain, while a
compute intensive application runs in another one, how to
configure the scheduler parameters in order to achieve the
desirable performance?

After the innovation of architecture for Xen 3.0, the new
I/O model results in a more complex CPU resource usage.
In [7], CPU usage for I/O intensive applications has two
aspects: CPU used by the guest domain running the
application, and CPU consumed in the Domain0 performs
I/O processing on behalf of the guest domain. But when
applications run in a single virtual machine, how
misbehaving the domain0 behave in the resource dispatch?

V. EXPERIMENTAL METHODOLOGY

A. Benchmarks
Our study was performed with the following

benchmarks:
Cal: This small application tries to use as much CPU

times in its domain as it could. It just runs an infinite loop
for computation.

Netperf: We measure maximum achievable network
throughput with Netperf 2.4.4 between a server host and a
client end which runs in the VM [1].

Iozone: A file system benchmark tool to check the
performance of disk [2].

Httperf: A tool to measure web server performance. The
performance of web server was measured through it[3].

SysBench: We evaluate the performance of database
transactions using SysBench [4].

B. Experimental system
Our testbed was consisted of a Dell OptiPlex 755 with a

2.33 GHz Intel Core 2CPU E6550, 3 GB of RAM, 160GB
hard disk, and one 1000M Ethernet cards. The driver domain
and all guest domains ran the CentOS 5.1 with the Linux
2.6.24-18-53.e18 kernel, and the virtualized system ran Xen
3.2.1+2.6.24-18-53.e18-xen.

C. Experiments
The experiments used the following test suite combines

several typical combinations of applications in Table 1.

TABLE I. TYPICAL COMBINATIONS OF APPLICATIONS

Consolidation types Benchmark
B + C Netperf + Cal
D + C Iozone + Cal
W + D Httperf + Iozone
W + C Httperf + Cal
T + D SysBench + Iozone
T + C SysBench + Cal

69

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:14:01 UTC from IEEE Xplore. Restrictions apply.

 B: bandwidth intensive application
 C: compute intensive application
 D: disk I/O intensive application
 T: transactional database

W: web server
Each character in Table 1 such as B symbolizes one type

of applications enumerated above. They will be also used in
the following.

VI. EXPERIMENTAL RESULTS

A. Impact of Domain0’s weight on a single domain
In Figure 1, we find that the performance appeared in the

different configurations when we varied the CPU resources
allocated to domain0 relative to domain1 is almost the same.
When the weights allocated to domain0 relative to domain1
changed, the throughput attained in domain1 kept unchanged
and close to the performance got in native Linux. Though
Domain0 consumes CPU resources to perform I/O
processing on behalf of the guest domain, the impact of its
weights made on domain1 is little due to improved Xen
kernel.

B. Proper weight and impact between domains
Figure 2 shows that network throughput for Credit

scheduler with different values of weight allocated to
different domains. The x-axis presents eight different
configurations where the weights allocated to Domain1
relative to domain2 are 1:1, 1:2, 1:4, 1:6, 1:8, 4:1, 6:1, 8:1,
while domain1 ran a client end of Netperf to obtain the
maximum throughput and domain2 ran a Cal which is
compute intensive. The y-axis presents the throughput
obtained in the domain1.

0

200

400

600

800

1000

1:4 1:6 1:8 4:1 6:1 8:1

domain0:domain1(weight)

t
h
r
o
u
g
h
p
u
t
(
1
0
^
6
b
i
t
s
/
s
e
c
)

Figure 1. Impact of domain0’s weight

0
100
200

300
400
500
600
700

800
900
1000

8:1 6:1 4:1 1:1 1:2 1:4 1:6 1:8

domain1(B):domain2(C)(weight)

t
hr
ou
gh
pu
t(
10

6̂
bi
ts
/s
ec
) 1:4

1:1

4:1

Figure 2. Proper weight for the combination of bandwidth and compute

intensive applications

The compute intensive application running in domain2
plays a significant influence on the performance of
bandwidth intensive application in the domain1. We first
note that when the compute intensive application and the
bandwidth intensive application run simultaneously the
throughput is quite sensitive to the weight for all domains.
Intuitively, when domain1 is assigned more weight than
domain2, it gets more credits as we described in the formula
in Section 4, then it gets higher priority when scheduled. As
compute intensive application performs an infinite compute
loop in domain2, it will be scheduled every 30ms (3 slices)
and will not free CPU resources until the end of one slice.
Though boost optimization in Xen 3.03 is to prevent
compute intensive domains from starving I/O intensive
domains, it still should wait till the end of 10ms. When
bandwidth intensive application needs to be scheduled, it
couldn’t preempt the computing domain immediately,
resulting in decreased bandwidth. Second, the weight for
domain1 is not that more higher more better. As Figure 2
illustrates, it is enough to allocate weights to domains when
the ratio of the weights for domain 1 to the weights for
domain 2 is 1:1.

Figure 3 illustrates that the performance of disk writing
and reading is almost not influenced by the compute
intensive domain. In this test, we ran Iozone to evaluate the
performance of disk reading and writing in domain1 while
Cal in domain2. The x-axis presents the weights allocated to
domain1 relative to domain2 and the y-axis presents the rate
of reading and writing disk with different Reclen size from
4KB to 16384KB. In this test, the performance difference
for the disk processing in domain1 with different
configurations of weight is hardly visible. On account of
DMA (direct memory access) in current disk architecture,
disk I/O processing is performed by the DMA controller
rather than CPU. Thus, the performance of disk I/O
processing does not depend much on the weights allocated
to domains as shown in Figure 3.

Figure 4 presents the results of the performance
evaluation of web server ran in domain1 when there was a
Cal or Iozone running in domain2 respectively. First, it is
easy to find the dramatic increase of the reply time for the
web server when we allocate more weights to domain2
which runs another application. Second, when Iozone runs
in domain2, the performance for web server running in
domain1 is to some extent better. In deed, for using Httperf
to require masses of web pages frequently from the web
server running in domain 1, writing disk is necessary.
Running an Iozone need to perform lots of disk I/O
processing, however, the rate of disk writing and reading is
a bottleneck. The consolidation of web server and disk I/O
intensive application leads to a higher overhead in disk
processing which limits the performance of the web server.

70

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:14:01 UTC from IEEE Xplore. Restrictions apply.

write disk, file size = 16M

0

100000

200000

300000

400000

500000

600000

700000

800000

de
fa
ul
t

8:
1

4:
1

2:
1

1:
1

1:
2

1:
4

r
a
t
e
(
K
b
y
t
e
s
/
s
e
c
)

4

16

64

256

1024

4096

16384

(a)

read disk, file size = 16M

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

de
fa
ul
t

8:
1

4:
1

2:
1

1:
1

1:
2

1:
4

r
a
t
e
(
K
b
y
t
e
s
/
s
e
c
)

4

16

64

256

1024

4096

16384

(b)

Figure 3. Impact of weight when disk I/O and compute intensive
applications running concurrently

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

8:1 4:1 2:1 1:1 1:2 1:4 1:8
domain1(W):domain2(C/D)(weight)

r
e
p
l
y

t
i
m
e
(
m
s
) W+C

W+D

Figure 4. Performance of web server in consolidation of disk I/O and

compute intensive applications respectively

Figure 5 shows the performance of SysBench which
evaluated the performance of the database running in
domain1. We used SysBench to create a table on a MySQL
server running in domain1 and fill the table with 1M
records. The Y-axis presents the time spending in this
processing in domain1 while domain2 runs a compute
intensive application and an Iozone respectively. With the
decreased weights for domain1, time for database
processing is increased accordingly when a Cal is running
concurrently. However, with a disk I/O intensive application
running in domain2, the database processing time increases
till the ratio of domain1’s weight to domain2’s is 1:1. More
weights allocated to another domain performing disk
processing have made no impact on degradation of the
performance in domain1. In fact, the processing of database
transactions involves both disk I/O processing and CPU
handling. As disk performs I/O through DMA and the
bottleneck problem for the rate of disk processing, provided

a certain proportion of CPU resources are enough for it.
However, the compute intensive domain consumes as much
CPU resources as it is allocated which incurs significant
performance degradation of the database transactions while
disk I/O intensive domain plays less influence.

Figure 6 presents the performance of consolidation of
database transaction and web server. Left y-axis figures the
time spending in database transactions while right y-axis
introduces the reply time of the web server running in
another domain evaluated by Httperf. The performance of
database server is a little mixed, fluctuates in different
configurations of the weight. Nonetheless, allocating two
times more weights to the web server domain than that to
the database transactions domain is optimal distribution.

0

20

40

60

80

100

120

140

160

8:1 4:1 2:1 1:1 1:2 1:4 1:8

domain1(T):domain2(C/D)(weight)

p
r
o
c
e
s
s
i
n
g

t
i
m
e
(
s
) T+C

T+D

Figure 5. Performance of the database transactions in consolidation of

compute and disk I/O intensive applications respectively

Figure 6. Performance of the web server and database transactions

running concurrently in two domains

C. Impact of both cap and weight
From Figure 1 we find the performance is not influenced

when the weights allocated to domain 0 and domain 1
change. But things are changing when adding cap for Credit
scheduler. We used Netperf to get the maximum bandwidth
in domain 1 and changed the ratio of weight owned by
domain 0 to domain 1. As Figure 7 shows, when domain1’s
cap is changed, the weight has also made an impact on the
performance. An upper cap of CPU resources for a domain
results in significant performance degradation. But when
necessary to limit a domain’s CPU resources we can set
proper weight for the domain to achieve the best
performance. We can find in the Figure 7, for bandwidth
intensive applications, the best performance achieved when
the configuration where weights allocated to domain0
relative to domain1 is 1:1 with corresponding cap.

71

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:14:01 UTC from IEEE Xplore. Restrictions apply.

0

100

200

300

400

500

600

700

800

900

1000

10 30 50 0
domain0:domain1(B)(weight)

t
h
r
o
u
g
h
p
u
t
(
1
0
^
6
b
i
t
s
/
s
e
c
) 1:8

1:6

1:4

4:1

6:1

8:1

Figure 7. Impact of both cap and weight in single domain

0

100

200

300

400

500

600

700

800

900

1000

0 0 10 0 10 10 50 50 0 50 0 10
domain1(B):domain2(C)(weight)

th
ro
u
gh
pu
t
(1
0^
6b
it
s
/s
ec
) 1:8

1:6

1:4

1:2

1:1

2:1

4:1

6:1

8:1

Figure 8. Impact of both cap and weight for an applications consolidation

case

Figure 8 presents the throughput for Credit scheduler in
different configurations of weight and cap respectively
achieved in domain1 when a Cal ran in domain2. Setting
different caps for these two domains with different weights
leads to a drastic difference in application performance.
Since a cap is set to limit the CPU resources allocated to
domain2 which ran a Cal, the maximum bandwidth
achieved in domain 1 is increased obviously. As shown in
Figure 8, weight also plays an important role. We can find
in the figure that when the bandwidth intensive domain
could use the idle CPU resources and an upper cap (10) for
compute intensive domain, the different weights between
two domains have not made an impact on the performance.

VII. CONCLUSIONS
The main motivation for enterprises to adopt

virtualization is server consolidation. In this work, we make
a qualitative comparison about the performance of several
typical combinations of applications and identify the impact
that scheduler parameters make on the performance of
applications.

The parameters of scheduler can make a significant
impact on the performance of applications, particularly in
the case of consolidation. Furthermore, the mutual influence
between domains which run different types of applications
is different according to different combinations of
applications. First, the study has shown that compute
intensive applications have almost made no impact on the
disk I/O intensive ones running in another domain. However,
if a web server shares CPU resources with disk I/O intensive
applications, the performance of web server is degraded
significantly. Second, since the rate of disk I/O processing is

a bottleneck and DMA in disk architecture, more CPU
resources allocated to it can be preempted by other domains.
Our work presents a case of a web server concurrently
running with a disk I/O intensive application, the
experiments results show that provided a certain amount
CPU resources is enough for disk I/O processing. Third, the
proper scheduler configurations are figured out to schedule
several typical types of applications and some proposals are
presented for virtualization users to deploy and manage their
workloads more efficiently.

Resource allocation and scheduling remains an issue
which is understood inadequately. The future work for us
are to analyze more concrete server consolidation influenced
by the scheduler parameters and explore more complex and
integrated relationships among VMs. Efficient scheduler
configurations for different types of applications and
reasonable arrangements of them are still interesting for
future work.

ACKNOWLEDGMENT
This research was supported by State Key Development

Program of Basic Research of China (Grant No.
2007CB310900) and National Science Foundation of China
(Grant No. 60873023).

REFERENCES
[1] Netperf. http://www.netperf.org/netperf/NetperfPage.html.
[2] Iozone filesystem benchmark. http://www.iozone.org/.
[3] Httperf. http://www.hpl.hp.com/research/linux/httperf/.
[4] SysBench. http://sysbench.sourceforge.net/.
[5] Credit scheduler. http://wiki.xensource.com/xenwiki/CreditScheduler.
[6] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling I/O in Virtual

Machine Monitors”, The International Conference on Virtual
Execution Environments (VEE), Seattle, WA, March, 2008, pp. 1-10.

[7] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
Performance Isolation Across Virtual Machines in Xen”, Proc. of the
ACM/IFIP/USENIX 7th International Middleware Conference
(Middleware' 2006), Melbourne, Australia, Nov. 27 - Dec.1, 2006,
pp. 1-13.

[8] L. Cherkasova, A. Vahdat and D. Gupta, ”Comparison of the three
CPU schedulers in Xen”, ACM SIGMETRICS Performance
Evaluation Review (PER), Vol. 35, No. 2, September 2007, pp. 42-
51.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “ Xen and the art of
virtualization”. In Proceedings of the Symposium on Operating
Systems Principles (SOSP), Oct. 2003, pp. 1-14.

[10] David Chisnall. The Definitive Guide to the Xen Hypervisor, Prentice
Hall PTR, November 19, 2007.

72

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:14:01 UTC from IEEE Xplore. Restrictions apply.

