
Strategies to Transparently Make a Centralized Service Highly-Available

Adrian Coleşa, Bogdan Marincaş, Iosif Ignat, Cosmin Ardelean
Computer Science Department

Technical University of Cluj-Napoca (UTCN), Romania
Email: adrian.colesa@cs.utcluj.ro, bmarincas@student.utcluj.ro, iosif.ignat,cosmin.ardelean@cs.utcluj.ro

Abstract—Services’ high-availability has received great at-
tention for years, yet it is not clear how this can achieved
efficiently for different types of services. Current research
focuses on finding strategies to provide high-availability using
commodity hardware and as independent of the service and
transparent to the clients as possible.

This paper investigates strategies to provide high-availability
for centralized services, in a transparent way to the service
itself. We describe a replication system that provides fault-
tolerance for any type of centralized service. Our system runs
each service instance into a virtual machine and dynamically
replicates the entire virtual machine.

The testing prototype was implemented using the Xen
hypervisor. It proved functional, totally transparent to service
and clients and efficient.

Keywords-High-Availability, Replication, Fault-Tolerance,
Scalability, Virtualization

I. INTRODUCTION

High-availability [1] is an important requirement of many
public services provided today. Therefore, it received great
research interest over the years. The main technique used to
get high-availability is replication [2]. It provides the basis
for fault-tolerance and scalability.

Most existing solutions are based on specialized hardware
and require the service to be designed for a distributed
environment. Research has focused on finding solutions
requiring minimal contribution of the service in all the
complex distributed mechanisms needed to provide high-
availability. That resulted in specialized frameworks [1]
over which the services can be easily implemented. Such
solutions require the service to be specifically designed to fit
into the framework, so they do not provide total transparency
to the service.

Other methods concentrate on providing high-availability
as transparent as possible to the service [3], but they are gen-
erally developed for specific applications like Web servers,
whose client communication protocol is known. In order to
provide transparency to the clients, they require service’s
collaboration, so they impose special design requirements on
the service. That way however they support active replication
which accounts for service scalability.

Total transparency to both clients and service itself is
obtained by systems like Remus [4] and Kemari [5], which
run the service in a virtual machine and replicate the entire
virtual machine to provide fault-tolerance [6]. Their method

supports only the primary-backup configuration, which can
provide for fault-tolerance, but not for load-balancing.

Our work is aimed at finding strategies to provide high-
availability to existing centralized services requiring no mod-
ification of them. We want to make the system transparent
for the service itself and as general as possible. Our methods
could be used for legacy services that are impossible or too
expensive to be reimplemented as distributed ones.

The two techniques we tried to combine in order to
achieve high-availability are replication and load-balancing.
We used replication of virtual machines in a primary-backup
configuration. In order to extend this method to also support
active-replication and consequently load-balancing, we note
that this is possible only for specific types of services. We
propose a replication strategy to make such services highly-
available.

The testing prototype of our replication system was
implemented using the virtualization and live migration
mechanisms provided by the Xen hypervisor [7]–[9]. The
tests we performed proved our method’s correctness and
efficiency.

II. TRANSPARENT REPLICATION OF A CENTRALIZED
SERVICE USING VIRTUALIZATION

In order to make a centralized service highly-available we
considered two techniques: replication and load-balancing.

There are two classical ways of implementing replication
[2]: primary-backup and active-replication. The primary-
backup configuration supports fault-tolerance, but not load-
balancing. Active-replication supports load-balancing, but
only for read requests, requiring complex synchroniza-
tion mechanisms in the case of update requests. Active-
replication can also hardly cope with update requests having
nondeterministic effect, while primary-backup inherently
manages them successfully.

Thus, read requests can be balanced and run simultane-
ously in an active-replication configuration, while update
requests can be executed only using a lock-step mechanism
in a primary-backup configuration, allowing just one update
to take place at one moment.

One of the goals we established for our research was to
make a centralized service running in a distributed way to
provide fault-tolerance (by replication) and scalability (by
load-balancing) totally transparent to the service itself.

978-1-4244-5007-7/09/$26.00 ©2009 IEEE 339

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:21:05 UTC from IEEE Xplore. Restrictions apply.

Having no support from the service’s application level,
our replication system must deal itself with anything that
normally implies service’s actions, e.g. make distinction
between read and update requests and replicate changes.

We considered the primary-backup strategy as the sin-
gle one providing total transparency to the service. Load-
balancing can be used in the primary-backup configuration
only when some details about the service are known in
advance. For example, services handling only read requests
or services for which the type of requests can be identified by
the replication system before being handled by the service.

The state of the service’s primary instance that is repli-
cated on the other nodes as backup instances (replicas) must
include not only the primary’s memory space, but also all
its corresponding resources and data structures the operating
system it runs on maintains for it. For example, the current
network connections between the primary instance and the
clients it serves must be replicated.

Even if we consider that the primary replica’s in-memory
state does not change, the operating system’s data structures
do change due to new requests associated with network
connections. So, in order for a backup replica to replace
a failed primary it is not sufficient just to have the same
in-memory state but also the same operating system state.

The technique we used to replicate the state of the
service’s primary instance and that of the operating system it
runs on is called replication using virtualization. We place
our service’s primary instance in a virtual machine on a
(primary) node and entirely replicate that virtual machine
on other (backup) nodes.

Replication using virtualization makes our system totally
independent from the service it replicates and also from the
operating system that service runs on. It provides us with
the mechanism to run a centralized service in a distributed
system creating more instances (replicas) of that service,
keeping them consistent with each other and, therefore,
making the original service tolerant to node failures. Note
that this replication schema considers only the situations
where just one primary is running at one moment, but load-
balancing cannot be used in such a configuration.

Load-balancing can be used only in a configuration where
each service’s instance has its state replicated. This seems
to bring us back to the primary-backup configuration, which
cannot be used for load-balancing. Still, this can be done, for
services that do not change their state during request han-
dling. The replication schema for such services is applied in
parallel on each primary-backup tuple. Such a configuration
is illustrated in Figure 1.

III. ACTIVE REPLICATION OF VIRTUAL MACHINES

Replicating a virtual machine can be obtained in two
ways.

The first one starts with two virtual machines which are
suspended and in the same state, i.e. identical. The virtual

Figure 1. Active Replication of Multiple Tuples of Primary-Backups

machine we are replicating is activated for a period of time
before it is again suspended. During its running period all
of its nondeterminism is recorded. Starting the other virtual
machine and playing back the recorded nondeterminism
at the appropriate moments will yield an identical virtual
machine. It is important to note that the outputs from the re-
played machine will be blocked. Recording and replaying is
troublesome when dealing with multi-threaded processes and
possible interactions between processes and is constrained to
one processor, as there is the difficulty of handling the SMP
multiprocessor computer architecture.

In the second method the primary is the only machine
allowed to run. After the primary was active for a period of
time it is suspended and its state is captured, that is, a check-
point is created, and is copied to the backup. To maximize
efficiency with each new round only the differences, mostly
modified memory pages, from the previous checkpoint are
transferred. Although this technique is highly dependent on
the locality memory modifications and therefore on network
throughput, it is the preferred one as it offers a higher degree
of generality than the first method.

The architecture we are proposing relies on the Xen
Hypervisor [7], [8] (Virtual Machine Monitor). Xen’s archi-
tecture has two types of guests (also called domains): priv-
ileged (Dom0) and underprivileged (DomU). While multiple
underprivileged domains are allowed, only one privileged
domain can exist. The privileged domain is used both for
control and access to hardware, through its drivers. Our
replication system runs in Dom0 and protects a DomU guest.

The term replication we are going to use from now on
refers to the active process of maintaining an exact copy
(replica) of a virtual machine (DomU guest) and its resources
in the context of another Xen hypervisor, on another physical
machine, over the network. We will also be using the terms
primary and backup to refer to the entire virtual machine we
are copying and its copy.

Our replication system allows transparent recovery from
failure, meeting the following constraints:

• No output is released until the protected virtual machine
is replicated.

• The time needed to detect and recover from failure is
small, a reasonable value being 1 second.

• Failure of either the primary or the backup is tolerated.

340

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:21:05 UTC from IEEE Xplore. Restrictions apply.

The whole virtual machine replication strategy consists of
the following steps:

1) Initially copy the whole state of the primary to the
backup.

2) Run the primary for a certain period of time, blocking
but buffering its network output.

3) Pause the primary and send to the backup the differ-
ences between this and previously transferred state.

4) Resume the execution of the primary and release its
formerly blocked output, once the backup confirms that
differences between states have been received.

The whole state of the virtual machine is composed of
memory, CPU and local hard disks it uses. The majority of
the differences between two states comes from the memory
pages that were written while the virtual machine was
running and local hard disk writes. The memory pages and
the CPU’s state are addressed as follows.

The actual process is an extension of a feature provided
by Xen, namely live migration [9], which allows a virtual
machine to be moved to another Xen hypervisor while the
machine is still running with little or no interruption. This is
achieved by transferring the state of its memory and CPU in
rounds. With each new round, pages that have been modified
by the active virtual machine are sent. This is done until the
set of pages to be transmitted is modified far too quickly for
the process to end. At this point the machine is suspended
and, in this final round, the remaining pages and the CPU
state are sent.

In essence our process is an uninterruptible live migration,
which starts with a whole memory and CPU state transfer
and subsequently repeats the final round.

The changed pages are detected with the use of Xen’s
shadow page tables. When this is activate, Xen marks the
guest’s pages as read-only and propagates any write attempt
to the shadow page table, before allowing the actual write.

Network output buffering is done by implementing a new
Linux queuing discipline attached to the virtual network
interface of the protected guest in Dom0.

Hard disk consistency is currently maintained in our
system with the help of DRBD [10] a distributed and
replicated block device.

In order to meet the second constraint of transparency,
primary’s failure must be detected rather quickly. Therefore
we deployed a heartbeat client-server configuration, which
is sensible enough to withstand network load, but promptly
reports a timeout in case the primary fails. Furhermore,
during the replication process the backup commits the state
once it has all been received. An accumulation of states
would be wasteful both in terms of memory and recovery
time. It follows that, once failure is detected, the backup
will be restored to the last committed state quite fast. Also,
after restoring, a gracious ARP packet will be sent in order
to notify the network devices of the change.

Figure 2. Average dirtied pages

In case the backup fails, the synchronization process will
be interrupted, but the primary will continue to run, albeit
without being protected.

IV. TESTS AND RESULTS

All tests we performed on our replication system were
run on a pair of computers with an AMD Athlon 2000 XP
processor, 1GB of RAM, 40GB of hard disk space and a
100Mbit Ethernet interface. The protected virtual machine
was allocated 64MB of RAM. During the synchronization
the protected guest was run for variable amounts of time
before checkpointing and transmitting its state.

First, in order to prove the correctness of our implemen-
tation, we established a SSH connection to the protected
guest and severed the connection between the primary and
the client by disconnecting the ethernet cable from primary’s
network interface. The SSH connection between the client
and the backup was reestablished in under one second.

Our first performance test was the compilation of Busy-
box’s source code. We felt that this test would best repre-
sent real world utilization of hard disk, memory and CPU
resources.

Figure 2 informs us that the number of dirtied memory
pages increases if the virtual machine is active for a longer
period of time. In this test the number of dirty pages does
not increase linearly with the running time, so one gains
computational time by not having to transfer many pages
on each iteration.

The iteration time in Figure 3 is the total time needed
to run a virtual machine, suspend it, checkpoint its state,
and resume the virtual machine. It can be seen that the time
needed to checkpoint, that is, capture the state and send
it over the network, i.e. replicate it, is considerably larger
then the running time. This is in part due to the increased
number of pages, as it was seen in Figure 2. However, it
is clear that the more frequent each iteration is, the larger
the resume time, which can even be greater than the actual
running time.

341

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:21:05 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Average times that compose an iteration

It is important to note that the average iteration time is also
a good measurement of the average network delay clients are
expected to experience.

V. RELATED WORK

Replication as a method to provide fault-tolerance and
its possible configurations — primary-backup and active
replication — are described in [2]. Systems like [1] propose
different frameworks, services can be built on, in order to
attain high-availability transparently to clients. They do not
provide however transparency to the service.

Problems encountered when deploying in practice highly-
available services are analyzed in [3]. They use a record-
and-replay technique to transparently mask service replicas
crashes from clients. Their system supports active repli-
cation and faces with random replicas’ states based on a
synchronization strategy implemented in the service itself, a
requirement that our system cannot impose.

Virtualization as a method to provide fault-tolerance was
first introduced in [6]. It was used in [4], [5], [9] to
transparently run centralized serviced in a distributed manner
to mask replicas’ crashes from clients. Their solutions are
based on the primary-backup configuration, which success-
fully deals with nondeterminism in the service’s state, but
does not support load-balancing. We proposed a way to
avoid this limitation for specific types of services.

VI. CONCLUSION

We explored a replication strategy to transparently make
a centralized service fault-tolerant to node crashes and
scalable, i.e. highly-available.

Transparency is achieved by placing the service in a
virtual machine. Fault-tolerance is provided by replicating
that virtual machine, based on the primary-backup strat-
egy. Scalability is obtained by load-balancing, proposing a
replication schema with more primary-backups tuples, but
it functions only for specific types of services or client
requests.

The testing prototype we implemented over the Xen
hypervisor proved our replication system’s correctness. Its
efficiency is closely dependent on those of the network link
between primary an backups, since the state’s transfer time
has the greatest weight in the total replication time.

Future work will aim to maximize the running time of
the primary while reducing the amount of data transfered
during state replication. We also want to investigate further
strategies to apply load-balancing for other types of services.

REFERENCES

[1] A. Fekete and I. Keidar, “A general framework for highly
available services based on group communication,” in Dis-
tributed Computing Systems Workshop, 2001 International
Conference on, 2001, pp. 57–62.

[2] R. Guerraoui and A. Schiper, “Fault-tolerance by replication
in distributed systems,” in Reliable Software Technologies -
Ada-Europe’96. Springer-Verlag, 1996, pp. 38–57.

[3] M. Marwah, S. Mishra, and C. Fetzer, “Enhanced server
fault-tolerance for improved user experience,” in Dependable
Systems and Networks With FTCS and DCC, 2008. DSN 2008.
IEEE International Conference on, 2008, pp. 167–176.

[4] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield, “Remus: high availability via asynchronous
virtual machine replication,” in NSDI’08: Proceedings of the
5th USENIX Symposium on Networked Systems Design and
Implementation. USENIX Association, 2008, pp. 161–174.

[5] Y. Tamura, “Kemari: Virtual machine synchronization for
fault tolerance using domt,” June 2008.

[6] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault
tolerance,” in SOSP ’95: Proceedings of the fifteenth ACM
symposium on Operating systems principles, vol. 29, no. 5.
ACM Press, December 1995, pp. 1–11.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles. ACM
Press, 2003, pp. 164–177.

[8] K. Fraser, H. Steven, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson, “Safe hardware access with the xen virtual
machine monitor,” in In Proceedings of the 1st Workshop
on Operating System and Architectural Support for the on
demand IT InfraStructure (OASIS), 2004.

[9] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration
of virtual machines,” in NSDI’05: Proceedings of the 2nd
conference on Symposium on Networked Systems Design &
Implementation. USENIX Association, 2005, pp. 273–286.

[10] L. Ellenberg, “Drbd 9 and device-mapper,” in In Proceedings
of the 15th International Linux System Technology Confer-
ence, October 2008.

342

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:21:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /MyriadWebPro
 /MyriadWebPro-Bold
 /MyriadWebPro-Condensed
 /MyriadWebPro-CondensedItalic
 /MyriadWebPro-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Raavi
 /Ravie
 /ShowcardGothic-Reg
 /Shruti
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

