
The Optimization of Xen Network Virtualization

ZHANG Jian1, LI Xiaoyong2, GUAN Haibing1*
1Department of Computer Science and Engineering, 2 School of Information Security Engineering

Shanghai Jiao Tong University
 Shanghai 200240, China

 jianzh@sjtu.edu.cn, xiaoyongli@sjtu.edu.cn, hbguan@sjtu.edu.cn

Abstract—Despite the benefits brought by virtualization
technology, the network I/O performance degradation remains as
a barrier for its wide usage. This paper presents the design and
implementation of a new method to improve Xen network
virtualization performance by optimizing the interrupt deliver
route and shortening the network I/O path. With the above
optimization techniques, network throughput of a HVM guest
domain is improved by 50%, CPU utility of QEMU driver model
is reduced by 70%, TLB miss and cache miss is improved by
40% to 80%. The rationale behind our optimization model can
also be extended for other I/O device virtualization in HVM guest
domain.

Keywords-Virtual machine; Xen; Network Virtualization
optimization, Ne2000

I. INTRODUCTION
The concept of virtual machine was introduced by IBM in

1960s, which is a virtual layer introduced between software
layer and hardware layer. Virtualization technology can
provide an isolated execution environment to applications,
shield the dynamics and heterogeneous of hardware platform,
and support share and reuse of hardware resources.

As there is a growing trends to use virtual machine for
server consolidation and system security enhancement in
distributed computing environment, virtualization technology
has attracted much interest in recently days[2][3]. Although
cost reduction and simplicity of management and
administration are the prominent advantages of virtualization
technology, the overhead is a big obstacle to its wider
applications. It is well known that compared with computing
intensive applications, I/O intensive applications, especially
network intensive applications suffer more in virtual execution
environment. For instance, Menon et al. [6]reported
significantly lower network performance under a Linux 2.6.10
guest domain compared to native Linux performance: degraded
by a factor of 2 to 3x when receive data, 5x when transmit data.
Our work also shows that throughput reduces by a factor of 4x
in a Windows XP Hardware Virtual Machine (HVM) guest
domain.

Based on research of the Xen network virtualization
architecture and our own observations, we think the major part
of overhead in Xen’s network performance degradation was
caused by the long data transfer path as well as the repeated
VM EXIT(see section 2.3) that leads to trap in Xen hypervisor
in a HVM domain.

In this paper, the design and implementation of a new
method is presented to improve the performance of Ne2000
virtual NIC network virtualization in a HVM guest domain. By
shorten the data transfer path and optimize the interrupt deliver
route, the network virtualization performance was improved.
Besides, the proposed optimization method can also be applied
for other I/O virtualization because most I/O device works the
same way as NIC.

The key contributions of this paper are as follow:

First, the motivation and key issues involved in the
optimization of virtual machine network virtualization are
described.

Second, a new model to optimize Xen network
virtualization is proposed and implemented which only needs
little modification to Xen but no modification to Guest OS.

Third, a detail performance evaluation of the optimization
model is given.

Table 1 summarizes the overall throughput performance of
the optimization model. While using winscp to copy a 100MB
file, the throughput improved 54%.

TABLE I. OVERALL THROUGHPUT PERFORMANCE

 Average Throughput
Native performance 2.13 Mbps
Ne2000 original 1.12 Mbps
Ne2000 optimized 1.72 Mbps

The remainder section of this paper is organized as follows:
Section 2 presents the motivation towards virtualization
optimization and how Xen works based on Intel-VT
technology. Section 3 describes key aspects of our design and
implementation. Section 4 introduces an evaluation method.
The experiment results demonstrate the effectiveness of our
optimization model. Section 5 reviews the related work and
Section 6 draws conclusions and discusses about the future
work.

II. BACKGROUND
This section presents the background information for our

work: Xen and Intel VT technology. To understand the Xen
network virtualization overheads better, we also present how
Xen network virtualization works.

*Corresponding author address: Guan Haibing, professor, Department of
Computer Science and Engineering, Shanghai Jiao Tong University, 800
DongChuan Road, Shanghai, 200240, China

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.389

431

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.389

431

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:13:15 UTC from IEEE Xplore. Restrictions apply.

A. Xen
Xen is an open source virtual machine monitor (VMM)

brought by Cambridge university, it allows many (up to 100)
different guest operating systems running on the same physical
machine [4]. Generally, there are two kinds of technology to
realize virtualization, full virtualization and para-virtualization.
VMware and Virtual PC use full virtualization and thus they
don’t need any modification to OS. Xen and Denali [9]use
para-virtualization technology which provides the virtual
machine an abstraction that is different from the underlying
hardware and needs patch for the kernel[3]. As guest OS must
be ported to the hypervisor, para-virtualization performance
was much better than full virtualization [6]. Xen support full
virtualized virtual machine from version 3.0 with the assist of
hardware virtualization technology such as Intel VT and AMD
Pacifica. As Xen does not change the application binary
interface (ABI), user level applications don not need any
modification to run in Xen and thus keeps the application
compatibility.

Fig.1 illustrates the architecture of Xen hypervisor [4].
Unlike hosted VMM model which hypervisor running on top
of OS, Xen is running directly on hardware. In Xen, the
terminology domain refers to virtual machine, all domains runs
on Xen hypervisor. There is a privilege domain named
domain0, which can creates, destroys other domains, it also
controls the schedule parameter, memory allocation, disk
access and other operations. Two mechanisms are designed for
communication between Xen and guest domain: synchronous
hypercall for domains to call Xen and asynchronous event-
channel for Xen to deliver notifications to domains.

Hardware(CPU, memory, Ethernet, IDE etc.)

Device
Manager&

Control S/W

Device
Manager&

Control S/W

Device
Manager&

Control S/W

Control
IF

SafeHW
IF

Event
Channel

VCPU
VMMUXen Hypervisor

BackEnd

FrontEnd
Device
Drivers

FrontEnd
Device
Drivers

VM0 VM1 VM2

Native
Device
Driver

Domain0 Modified
GuestOS

Unmodified
GuestOS

VT-x

Figure 1. Xen hypervisor 3.0 architecture

B. VT technology in Xen
Our work adopts full virtualized guest virtual machines,

which needs the support of hardware virtualization technology.
In 2005, Intel released its hardware virtualization technology, a
serial of processor technologies that can support unmodified
OS running on Intel-VT enhanced VMMs[8].

As Fig.2 described, VT-x supplies two new CPU operation
environments: virtual machine extensions (VMX) root

operation and VMX non-root operation. VMM runs in VMX
root operation while guest runs in VMX non-root operation.
The transfer from VMX non-root operation to root operation is
called VM Entry and the opposite direction is called VM Exit.

The virtual machine control structure (VMCS) is defined to
manage VM Entry and VM Exit. It includes guest-state area
and host-state area. When guest OS executes privilege
instructions, it will cause VM Exit, Xen will save the processor
state to guest-state area and load processor state from the host-
state area. VM entry will do the opposite job. Xen can handle
some of VM Exits directly; however, most of them must be
handled by Domain0.

(
Hardware(CPU,disk,etc)

,I/O

VM1 VMn

VMM

VMExit VMExitVMEntry

VMXON VMXOFF

VMCS VMCS

Figure 2. Architecture of Intel VT-x

III. XEN NETWORK I/O ARCHITECTURE
Xen uses a spit driver model, among all domains running

on Xen, only domain0 has direct access to physical I/O devices.
It performs I/O operations on behalf of the other domain. As
shown in Fig.1, in order to access device, guest OS sends
request to the Frontend and Frontend will transfer request to
the corresponding Backend. In this way, each data transmit or
receive operation must go through domain0, which makes the
network I/O virtualization architecture in Xen a bottleneck for
networking performance.

A. Data transfer in HVM domain
The performance is even worse for a HVM domain without

Front driver like windows. Fig.3 shows the network send
packet flow in a HVM domain:

1) When a guest domain, named as domainU, sends data
packet, the In/Out instruction will trigger VM Exit, control will
transmit from guest domain to Xen. A function will be called to
handle VM Exit. If this function can handle it directly, the
process will be finished immediately.

2) Xen writes the detail information of the In/Out
instruction to a shared page between Domain0 and DomainU,
and then notifies domain0 via event-channel. After this, Xen
will block DomainU and schedule other domains to run.

3) Xen restores domain0 and transfers control to domain0.

4) The first function on domain0 to be called is the
callback function hypervisor_callback, which will call
evtchn_do_upcall to collects I/O request from domainU.

432432

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:13:15 UTC from IEEE Xplore. Restrictions apply.

5) evtchn_do_upcall will trigger the select system call in
switch and then call I/O request handle function
cpu_handle_ioreq. The latter will call cpu_get_ioreq to get the
I/O request information in the shared page.

6) DM figures out what kind device the request wants to
access, and calls the corresponding callback function registered
when the device was initialized to process the request.

7) Those call back function were executed to send/receive
data through the physical driver in domain0.

8) When the data transfer finished, DM will notify Xen that
the data transfer has been completed. Xen will unblock
domainU when it gets the notification, and then domainU can
run again.

B. Overheads
In the above flow, if a HVM guest domain wants to send a

packet, it has to write the command register and other registers
that are emulated by QEMU first. Thus there will be a switch
from HVM guest domain to Xen hypervisor and Xen
hypervisor to Domain0. Those switches need to save and load
CPU state, memory information, and etc at high cost.

This model extends the data transfer path and leads to two
more switch between domain0 and Xen hypervisor, and causes
a high overheads. This is the reason for the significant
overhead for network I/O performance as described in section
1 and also the motivation to optimize the Xen network
virtualization.

Hardware

I/O shared
page VMExit

Driver Evtchn Driver

Application

sw
itchDM

Hypervisor

Domain0 DomainU

Unmodified KernelModified driver

1

2
Event channel

3

4

5

6

7

Figure 3. Xen network virtualization I/O process flow

IV. DESIGN AND IMPLEMENTATION
The optimization model was implemented for Xen 3.0.4

with Linux kernel 2.6.16.33. Design issues and how the
optimization model works will be proposed in this section.

A. Design issues
Because how guest domain I/O request is sent to/from each

physical NIC has great impact on the performance, one way to

improve the network performance is to optimize the interrupt
deliver route and shorten the data transfer path. Xen provides
many virtual NICs to guest OS, such as Pcnet, Rtl8139 and
Ne2000. We take Ne2000 for our optimization because its
performance is quite poor and its structure is relatively simple.
Our test shows that, in a Windows XP HVM guest domain, the
native network throughput is 94.43Mbps while the Ne2000
throughput is only 18.84Mbps.

The optimization of the network virtualization performance
of an HVM guest domain cannot make any modification to the
guest operating system. Thus, in our design, we add a driver to
the HVM guest domain to handle the requests and reroute the
interrupt and requests.

It is known that the manipulations to NIC are realized by
operations to its registers, including control registers and state
registers. Among those operations, only a few write operations
to control registers will trigger NIC hardware operations. Other
operations such as read/write operations to state registers and
read operation to control registers will not trigger NIC
hardware operations. Taking this into consideration, we design
and implement a driver in the hypervisor to handle those
operations that will not trigger NIC hardware action and
operations that Xen can process directly. Since the proposed
driver shortens the data transfer path and reduces the switch
between Xen and guest domain, an improvement on the
performance of the Ne2000 virtual NIC can be achieved.

B. Architecture Overview
Shared I/O page data structure in Ioreq.h is used to store the

information of I/O requests and the process results of those
requests. Both Xen and domain0 have direct access to this
shared I/O page. The following optimizations were based on
this feature:

First, move Ne200State data structure that describes the
state information about the Ne2000 virtual NIC from QEMU to
the shared I/O page. Hence both Xen hypervisor and Domain0
can access it directly.

Second, change the original way to access the Ne2000
virtual NIC and move the functions that read registers and
write state registers to Xen hypervisor. However, those
functions that handle operations to control registers haven’t
been changed since they need the help of domain0.

Third, add a simple switch in Xen hypervisor to judge
whether our optimization driver can handle the requests from a
HVM guest domain. If the driver cannot handle it, the request
will be processed in the original way.

Fig.4 illustrates the Xen hypervisor architecture after
optimization. The overall optimization model changes only a
little part of Ne2000 virtual NIC and adds a small patch to the
Xen hypervisor. It does not affect the reliability and
performance of Xen hypervisor. By moving the state
information of Ne2000 virtual NIC to I/O shared page, a lot of
register read operations and state register I/O requests can be
processed in Xen directly. This model reduces the switches
between Xen and domain0, shortens the data transfer path, and
improves the Ne2000 virtual NIC performance.

433433

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:13:15 UTC from IEEE Xplore. Restrictions apply.

Vmx_vmexit
_handler()

switch

Modified
I/O handle
functions

Hypervisor

Shared I/O page

Ne2000State

Figure 4. optimization architecture overview

C. Implementation
To implement the optimization model, first move the

Ne2000State data structure, then redefine the initialization
function and at last, redefine the I/O handle functions.

1) NE2000State: Move NE2000State data structure from
Ne2000.c to shared_iopage_t data structure in ioreq.h. Thus
both domain0 and Xen hypervisor have access to it. It means
that we move the data structure in QEMU to Xen hypervisor.
To add NE2000State as a member to vcpu_iodata is relatively
simple:

struct vcpu_iodata {
 struct ioreq vp_ioreq; /* Event channel port */
 unsigned int vp_eport; /* vcpu uses it to notify DM */
 NE2000State ne_shared; /*added to vcpu_iodata*/

};

2) NE2000 initialization: The initialization function
pci_Ne2000_init is modified to get the Ne2000 state
information contained in vcpu_iodata, in the following way:

NE2000State *share=&(shared_page->vcpu_iodata[send

_vcpu].ne_shared);

When the state information from the shared I/O page is
obtained, we will call pci_register_device to register the virtual
device and pci_register_io_region to register the corresponding
read and write functions.

3) Switch and I/O operation functions: Now both domain0
and Xen hypervisor can manipulates Ne2000 NIC registers.
The next step is to move those functions which can process the
requests without domain0’s assistance to Xen hypervisor. We
mainly ported Ne2000_ioport_write and Ne2000_ioport_write
to Xen hypervisor. As not all of the requests can be handled by
our modified functions, a switch is needed to judge whether the
request can be handled and those requests that cannot be
handled will be sent to domain0 to process it as usual.

D. Data transfer flow
To further understand how the optimization model works

and make a comparison between it and the original model,
Fig.5 is referred. It describes the work flow of the optimization
model. After moving those functions which don’t need the help
of domain0 to Xen hypervisor, the original data transmit path
was shortened as Xen will handle it directly and did not need to
send interrupt to domain0 and switch to it. This leads to
performance improvement as the experiment results
demonstrate in section 4.

Taking data transfer as an example, the optimization model
works in the following way:

1) When the HVM guest domain sends data packet to other
machine, it will write the control register or state register of
Ne2000 virtual NIC. IN/OUT instruction will cause VM Exit
and traps in Xen.

2) Xen gets control of CPU and calls function
vmx_vmexit_handle, which will read reasons of VM Exit from
VMCS structure. The hypervisor will get the detail information
about the I/O operation, such as I/O type, I/O port address, data
length, etc. vmx_vmexit_handle will call vmx_io_instruction to
handle I/O operations, which will invoke send_pio_req
function later.

3) Send_pio_req will analyze the I/O request information
and call our switch to judge whether this request can be
handled by our model.

4) Described as the dashed line in Fig.5, if the request can
be handled in Xen, the request will be sent to the modified
Ne2000 I/O functions immediately, and the results will be
written to the shared I/O page. As soon as this process finished,
it will notify Xen hypervisor. It is observed in Fig.5 that the
data will flow in the dashed line. Hence the data transfer path is
greatly shortened compared with the original model.

5) If this request cannot be handled by Xen alone, the
switch places the I/O request in the shared I/O page and
notifies domain0 to handle it by the original way shown in
Fig.3.

Compared Fig.3 with Fig.5, our optimization model greatly
shortens the data transfer path by intercepting I/O requests and
handling it immediately. In this way we reduced the switch
between the Xen hypervisor and domain0, which is the major
reason for the high performance degradation, and thus
improved the performance of Xen network virtualization.

Hardware

I/O shared page VMExit

Driver Evtchn Driver

Application

sw
itchDM

sw
itch

I/O
Handle
function

Hypervisor

Domain0 DomainU

Unmodified KernelModified driver

1

3 2Ne2000State

4

5

Figure 5. Data Transfer flow in the optimized model

434434

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:13:15 UTC from IEEE Xplore. Restrictions apply.

V. EXPERIMENTAL RESULTS AND EVALUATION
The optimization was implemented on Xen 3.0.4, running a

Linux kernel 2.6.16.33. We use two testing machines, machine
A with Intel CoreTM2 Duo 1.86GHz processor with VT-x
support, 4MB L2 cache, 1GB memory; machine B with Intel
Pentium D 3.00GHz processor, 2MB L2 cache, 1GB memory.
We configured two guest VMs on machine A with 512MB
memory which installed Windows XP sp2 operating system.
VM1 uses the original Ne2000 virtual NIC and VM2 uses our
optimized virtual NIC.

A. Evaluation methodology
To evaluate the performance of the optimization, the

experiment compares the throughput, TLB and cache miss,
CPU overheads and VM Exit between the original network
model and the optimized model.

For the testing benchmarks, three different benchmarks are
employed, CHARIOT to measure the throughput and response
time, Xenoprof to measure the TLB and cache misses,
Xentrace to measure the number of VM Exit, and Linux top is
adopted to analyze CPU overheads.

B. Throughput Performance and latency
In the experiment, CHARIOT endpoints run on VM1, VM2

and machine B separately. VM1 and VM2 sends 2000 records
with different record size to VM3 at the speed of 50 records per
second. In such way, the throughput and latency is measured.

0

5

10

15

20

25

30

35

128 256 512 1024 1540 10000000

Th
ro

ug
hp

ut
(M

Bp
s)

Record Size(Byte)

Original Ne2000

Optimized Ne2000

Figure 6. Throughput comparison results

Fig.6 shows the throughput results while sending records at
different size between VMs and Machine B. As demonstrated
in this figure, the optimization model improved the throughput
by a factor range from 1.43 to 1.86 with the average of 1.56.
The experiment also shows that when sending small records,
the latency of the optimized virtual NIC is 0.001s, which is
improved by 100% compared to the original 0.002s. When the
size of the record increases to 10000000Bytes, the latency of
our optimized virtual NIC is 2.713s, which is improved by a
factor of 1.56 compared to the original 4.244s.

C. TLB and Cache Miss
We use Xenoprof[6]workload to evaluate the TLB and

cache miss results of the optimization model. In the experiment,
Xenoprof benchmark measures the TLB and cache miss when
sending 109 data with Chariot from VM1 and VM2. The
experiment shows that the TLB misses does not concentrate on
several functions but scatters in domain0. This is quite similar
to the conclusion in Menon’s discovery [6]. In our
configuration, we set the time counter to 10000, thus Xenoprof
will sample every 10000 clock cycle.

In the experiment, in the original model, 1116 ITLB miss,
135661 DTLB miss and 45679 L1 cache miss happened; while
in the optimized model, 704 ITLB miss, 25506 DTLB miss and
25506 L1 cache miss happened. These results show that the
ITLB miss improves by 40% and the DTLB miss improves by
81%.

Table 2 shows the detail ITLB, DTLB and cache miss
comparison (in percent) between the original Ne2000 virtual
NIC and the optimized Ne2000 virtual NIC on most important
function. It shows that the function call of
Ne2000_ioport_write is dramatically reduced. In addition, as in
the optimization Virtual NIC, most requests need not to deliver
request to QEMU, the evtchn_do_upcall, which switch from
Xen hypervisor to domain0, was reduced too.

D. CPU Overheads and VM Exit
Due to the increase of throughput, the data transfer time is

greatly reduced, and the number of VM Exits during sending
109 Bytes record is also reduced. Experiment results show that
in the original Ne2000 virtual NIC 30427338 VM Exits
happened, while in the optimized Ne2000 virtual NIC only
26613669 VM Exits happened. The total number of VM Exits
reduces 12.5%.

TABLE II. XENOPROF ITLB, DTLB, AND CACHE MISS RESUTLS

Module Function Original Ne2000 Virtual NIC Optimized Ne2000 Virtual NIC
ITLB

miss %
DTLB
miss %

L1 cache
miss %

ITLB
miss %

DTLB
miss %

L1 cache
miss %

qemu-dm cpu_handle_ioreq 0.5474 1.5288 1.6616 0.9943 0.8062 1.3487
vmlinux-syms
-2.6.16.33-xen

evtchn_do_upcall 0.6316 0.3745 0.6155 0.1420 0.6155 0.6316

qemu-dm Ne2000_ioport_write 0.3789 2.0072 0.2256 0.1420 0.0258 0.2117
qemu-dm main_loop_wait 0.2947 3.9097 1.0683 0.1420 2.638 1.4154
qemu-dm Ne2000_ioport_read 2.9830 0.1231 - 0.5474 0.1369 -

435435

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:13:15 UTC from IEEE Xplore. Restrictions apply.

In order to evaluate the impact of our optimized model to
CPU overheads, we use Linux Top to measure the CPU
overheads of QEMU-dm. In the original Ne2000 virtual NIC,
the CPU utility of qemu-dm is 68.7887% when sending the 109

Bytes records. In the optimized Ne2000 virtual NIC, the CPU
utility is 18.459%. The CPU overheads reduced by 73%. The
reasons of CPU overheads improvements lie in the shortening
of I/O transfer path and the reduction of cache miss.

VI. RELATED WORK
As performance becomes increasingly important to Virtual

Machine Monitor (VMM), several previous studies work on
the performance of Xen hypervisor to discover which part
should accounts for the performance degradation. Menon et al,
introduce a system-wide profiling tool Xenoprof for Xen which
was ported from Oprofile [6]As described in section 1, Menon
reported significant performance degradation of Xen network
virtualization.

As is reported by [11], the Xen hypervisor and domain0
consume as much as 70% of the execution time during network
transfers in Xen network virtualization architecture. Many
studies have been carried out to address this performance
problem. Aravind Menon et al [7]investigate three techniques
to optimize network virtualization in Xen. They define a new
network interface, optimize the implementation of I/O channel
between domain0 and guest domain and provide support for
the use of superpages in guest OS. It is reported that they
improved transmit performance by a factor of 4.4 and receive
performance by 35%. Unlike our research, their work was
designed for para-virtualization guest domains. Paul Willmann
et al [11]present hardware and software mechanism to enable
concurrent direct network access by guest OS. With their
architecture, they reduced CPU overheads, improved the
transmit performance by a factor of 2.1 and receive
performance by a factor of 3.3.

VII. CONCLUSION AND FUTURE WORK
This paper presents a new implementation to optimize Xen

HVM guest network virtualization by shortening the data
transfer path with detail throughput, TLB and cache miss, CPU
overheads experiment results. From the experimental results, it
is demonstrated that the optimized model can improve the
HVM guest network throughput by a factor of 1.56. The TLB
and cache miss and CPU overheads also improved a lot in the
new network virtualization model.

As I/O devices in Xen are all emulated by QEMU, the data
transfer path and process mechanism is similar to Ne2000
virtual NIC. Based on this similarity, we think that the
principle behind our optimization model applies to other virtual
device as well.

The optimization model mainly reduces switch between
domain0 and Xen hypervisor. The switch between domainU
and Xen remains as a future work to be solved.

ACKNOWLEDGMENT
This work is supported by 863 Program of China under

Grant No. 2006AA01Z169 and NSFC under grant No.
60503013. We are also grateful for other contributors from
INTEL Corporation.

REFERENCES
[1] Creasy R.J., the Origin of the VM/370 Time-Sharing System. IBM

Journal of Research and Development, l981, 25(5):483-490.
[2] R.P. Goldberg, "Survey of Virtual Machine Research," Computer, June

1974, pp. 34-45.
[3] Mendel Rosenblum, Tal Garfinkel, Virtual Machine Monitors: Current

Technology and Future Trends, Computer, May 2005, pp. 34-42.
[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A.Warfield. Xen and the art of virtualization.
In 19th ACMSymposium on Operating Systems Principles, Oct 2003.

[5] Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield, D. Magenheimer, J.
Nakajima, and A. Malick. Xen 3.0 and the art of virtualization. In Proc.
of the 2005 Ottawa Linux Symposium, Ottawa, Canada, July 2005.

[6] Menon, J. R. Santos, Y. Turner, G. J.Janakiraman, and W. Zwaenepoel.
Diagnosing Performance Overheads in the Xen Virtual Machine
Environment. In First ACM/USENIX Conference on Virtual Execution
Environments (VEE'05), June 2005.

[7] Aravind Menon, Alan L. Cox, Willy Zwaenepoel. Optimizing Network
Virtualization in Xen. In Proceedings of the 2006 USENIX Annual
Technical Conference, Boston, MA, May 2006.

[8] R.Uhlig, G.Negier, and D.Rodgers, Intel virtualization technology, IEEE
Computer Volume 38, Issue5, pp.48-56, May 2005.

[9] Whitaker, A., Shaw, M., Gribble, S. D. Denali: Lightweight Virtual
Machines for Distributed and Networked Applications. Proceedings of
the 5th USENIX Symposium on Operating Systems Design and
Implementation,2002, 195-209.

[10] K. Fraser, S. Hand, R. Neugebauer, I. Pratt,A. War_eld, and M.
Williamson. Safe hardware access with the Xen virtual machine monitor.
In 1st Workshop on Operating System and Architectural Support for the
on demand IT InfraStructure (OASIS), Oct 2004.

[11] Paul Willmann, Jeffrey Shafer, David Carr, et al. Concurrent Direct
Network Access for Virtual Machine Monitors. Proc of High
Performance Computer Architecture, 2007.

436436

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:13:15 UTC from IEEE Xplore. Restrictions apply.

