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Abstract—Despite the benefits brought by virtualization 
technology, the network I/O performance degradation remains as 
a barrier for its wide usage. This paper presents the design and 
implementation of a new method to improve Xen network 
virtualization performance by optimizing the interrupt deliver 
route and shortening the network I/O path. With the above 
optimization techniques, network throughput of a HVM guest 
domain is improved by 50%, CPU utility of QEMU driver model 
is reduced by 70%, TLB miss and cache miss is improved by 
40% to 80%. The rationale behind our optimization model can 
also be extended for other I/O device virtualization in HVM guest 
domain. 

Keywords-Virtual machine; Xen; Network Virtualization 
optimization, Ne2000 

I.  INTRODUCTION  
The concept of virtual machine was introduced by IBM in 

1960s, which is a virtual layer introduced between software 
layer and hardware layer. Virtualization technology can 
provide an isolated execution environment to applications, 
shield the dynamics and heterogeneous of hardware platform, 
and support share and reuse of hardware resources. 

As there is a growing trends to use virtual machine for 
server consolidation and system security enhancement in 
distributed computing environment, virtualization technology 
has attracted much interest in recently days[2][3]. Although 
cost reduction and simplicity of management and 
administration are the prominent advantages of virtualization 
technology, the overhead is a big obstacle to its wider 
applications. It is well known that compared with computing 
intensive applications, I/O intensive applications, especially 
network intensive applications suffer more in virtual execution 
environment. For instance, Menon et al. [6]reported 
significantly lower network performance under a Linux 2.6.10 
guest domain compared to native Linux performance: degraded 
by a factor of 2 to 3x when receive data, 5x when transmit data. 
Our work also shows that throughput reduces by a factor of 4x 
in a Windows XP Hardware Virtual Machine (HVM) guest 
domain.  

Based on research of the Xen network virtualization 
architecture and our own observations, we think the major part 
of overhead in Xen’s network performance degradation was 
caused by the long data transfer path as well as the repeated 
VM EXIT(see section 2.3) that leads to trap in Xen hypervisor 
in a HVM domain. 

In this paper, the design and implementation of a new 
method is presented to improve the performance of Ne2000 
virtual NIC network virtualization in a HVM guest domain. By 
shorten the data transfer path and optimize the interrupt deliver 
route, the network virtualization performance was improved. 
Besides, the proposed optimization method can also be applied 
for other I/O virtualization because most I/O device works the 
same way as NIC. 

The key contributions of this paper are as follow:  

First, the motivation and key issues involved in the 
optimization of virtual machine network virtualization are 
described.  

Second, a new model to optimize Xen network 
virtualization is proposed and implemented which only needs 
little modification to Xen but no modification to Guest OS.  

Third, a detail performance evaluation of the optimization 
model is given. 

Table 1 summarizes the overall throughput performance of 
the optimization model. While using winscp to copy a 100MB 
file, the throughput improved 54%. 

TABLE I.  OVERALL THROUGHPUT PERFORMANCE 

 Average Throughput 
Native performance 2.13 Mbps 
Ne2000 original  1.12 Mbps 
Ne2000 optimized 1.72 Mbps 

 

The remainder section of this paper is organized as follows: 
Section 2 presents the motivation towards virtualization 
optimization and how Xen works based on Intel-VT 
technology. Section 3 describes key aspects of our design and 
implementation. Section 4 introduces an evaluation method. 
The experiment results demonstrate the effectiveness of our 
optimization model. Section 5 reviews the related work and 
Section 6 draws conclusions and discusses about the future 
work. 

II. BACKGROUND 
This section presents the background information for our 

work: Xen and Intel VT technology. To understand the Xen 
network virtualization overheads better, we also present how 
Xen network virtualization works. 
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A. Xen 
Xen is an open source virtual machine monitor (VMM) 

brought by Cambridge university, it allows many (up to 100) 
different guest operating systems running on the same physical 
machine [4]. Generally, there are two kinds of technology to 
realize virtualization, full virtualization and para-virtualization. 
VMware and Virtual PC use full virtualization and thus they 
don’t need any modification to OS. Xen and Denali [9]use 
para-virtualization technology which provides the virtual 
machine an abstraction that is different from the underlying 
hardware and needs patch for the kernel[3]. As guest OS must 
be ported to the hypervisor, para-virtualization performance 
was much better than full virtualization [6]. Xen support full 
virtualized virtual machine from version 3.0 with the assist of 
hardware virtualization technology such as Intel VT and AMD 
Pacifica. As Xen does not change the application binary 
interface (ABI), user level applications don not need any 
modification to run in Xen and thus keeps the application 
compatibility. 

Fig.1 illustrates the architecture of Xen hypervisor [4]. 
Unlike hosted VMM model which hypervisor running on top 
of OS, Xen is running directly on hardware. In Xen, the 
terminology domain refers to virtual machine, all domains runs 
on Xen hypervisor. There is a privilege domain named 
domain0, which can creates, destroys other domains, it also 
controls the schedule parameter, memory allocation, disk 
access and other operations. Two mechanisms are designed for 
communication between Xen and guest domain: synchronous 
hypercall for domains to call Xen and asynchronous event-
channel for Xen to deliver notifications to domains. 
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Figure 1.  Xen hypervisor 3.0 architecture 

B. VT technology in Xen 
Our work adopts full virtualized guest virtual machines, 

which needs the support of hardware virtualization technology. 
In 2005, Intel released its hardware virtualization technology, a 
serial of processor technologies that can support unmodified 
OS running on Intel-VT enhanced VMMs[8]. 

As Fig.2 described, VT-x supplies two new CPU operation 
environments: virtual machine extensions (VMX) root 

operation and VMX non-root operation. VMM runs in VMX 
root operation while guest runs in VMX non-root operation. 
The transfer from VMX non-root operation to root operation is 
called VM Entry and the opposite direction is called VM Exit. 

The virtual machine control structure (VMCS) is defined to 
manage VM Entry and VM Exit. It includes guest-state area 
and host-state area. When guest OS executes privilege 
instructions, it will cause VM Exit, Xen will save the processor 
state to guest-state area and load processor state from the host-
state area. VM entry will do the opposite job. Xen can handle 
some of VM Exits directly; however, most of them must be 
handled by Domain0. 
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Figure 2.  Architecture of Intel VT-x 

III. XEN NETWORK I/O ARCHITECTURE 
Xen uses a spit driver model, among all domains running 

on Xen, only domain0 has direct access to physical I/O devices. 
It performs I/O operations on behalf of the other domain. As 
shown in Fig.1, in order to access device, guest OS sends 
request to the Frontend and Frontend will transfer request to 
the corresponding Backend. In this way, each data transmit or 
receive operation must go through domain0, which makes the 
network I/O virtualization architecture in Xen a bottleneck for 
networking performance. 

A. Data transfer in HVM domain 
The performance is even worse for a HVM domain without 

Front driver like windows. Fig.3 shows the network send 
packet flow in a HVM domain: 

1) When a guest domain, named as domainU, sends data 
packet, the In/Out instruction will trigger VM Exit, control will 
transmit from guest domain to Xen. A function will be called to 
handle VM Exit. If this function can handle it directly, the 
process will be finished immediately.  

2) Xen writes the detail information of the In/Out 
instruction to a shared page between Domain0 and DomainU, 
and then notifies domain0 via event-channel. After this, Xen 
will block DomainU and schedule other domains to run. 

3) Xen  restores domain0 and transfers control to domain0. 

4) The first function on domain0 to be called is the 
callback function hypervisor_callback, which will call 
evtchn_do_upcall to collects I/O request from domainU. 
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5) evtchn_do_upcall will trigger the select system call in 
switch and then call I/O request handle function 
cpu_handle_ioreq. The latter will call cpu_get_ioreq to get the 
I/O request information in the shared page. 

6) DM figures out what kind device the request wants to 
access, and calls the corresponding callback function registered 
when the device was initialized to process the request. 

7) Those call back function were executed to send/receive 
data through the physical driver in domain0. 

8) When the data transfer finished, DM will notify Xen that 
the data transfer has been completed. Xen will unblock 
domainU when it gets the notification, and then domainU can 
run again.  

B. Overheads 
In the above flow, if a HVM guest domain wants to send a 

packet, it has to write the command register and other registers 
that are emulated by QEMU first. Thus there will be a switch 
from HVM guest domain to Xen hypervisor and Xen 
hypervisor to Domain0. Those switches need to save and load 
CPU state, memory information, and etc at high cost.  

This model extends the data transfer path and leads to two 
more switch between domain0 and Xen hypervisor, and causes 
a high overheads. This is the reason for the significant 
overhead for network I/O performance as described in section 
1 and also the motivation to optimize the Xen network 
virtualization. 
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Figure 3.   Xen network virtualization I/O process flow 

IV. DESIGN AND IMPLEMENTATION 
The optimization model was implemented for Xen 3.0.4 

with Linux kernel 2.6.16.33. Design issues and how the 
optimization model works will be proposed in this section. 

A. Design issues 
Because how guest domain I/O request is sent to/from each 

physical NIC has great impact on the performance, one way to 

improve the network performance is to optimize the interrupt 
deliver route and shorten the data transfer path. Xen provides 
many virtual NICs to guest OS, such as Pcnet, Rtl8139 and 
Ne2000. We take Ne2000 for our optimization because its 
performance is quite poor and its structure is relatively simple. 
Our test shows that, in a Windows XP HVM guest domain, the 
native network throughput is 94.43Mbps while the Ne2000 
throughput is only 18.84Mbps. 

The optimization of the network virtualization performance 
of an HVM guest domain cannot make any modification to the 
guest operating system. Thus, in our design, we add a driver to 
the HVM guest domain to handle the requests and reroute the 
interrupt and requests.  

It is known that the manipulations to NIC are realized by 
operations to its registers, including control registers and state 
registers. Among those operations, only a few write operations 
to control registers will trigger NIC hardware operations. Other 
operations such as read/write operations to state registers and 
read operation to control registers will not trigger NIC 
hardware operations. Taking this into consideration, we design 
and implement a driver in the hypervisor to handle those 
operations that will not trigger NIC hardware action and 
operations that Xen can process directly. Since the proposed 
driver shortens the data transfer path and reduces the switch 
between Xen and guest domain, an improvement on the 
performance of the Ne2000 virtual NIC can be achieved. 

B. Architecture Overview  
Shared I/O page data structure in Ioreq.h is used to store the 

information of I/O requests and the process results of those 
requests. Both Xen and domain0 have direct access to this 
shared I/O page. The following optimizations were based on 
this feature: 

First, move Ne200State data structure that describes the 
state information about the Ne2000 virtual NIC from QEMU to 
the shared I/O page. Hence both Xen hypervisor and Domain0 
can access it directly. 

Second, change the original way to access the Ne2000 
virtual NIC and move the functions that read registers and 
write state registers to Xen hypervisor. However, those 
functions that handle operations to control registers haven’t 
been changed since they need the help of domain0. 

Third, add a simple switch in Xen hypervisor to judge 
whether our optimization driver can handle the requests from a 
HVM guest domain. If the driver cannot handle it, the request 
will be processed in the original way. 

Fig.4 illustrates the Xen hypervisor architecture after 
optimization. The overall optimization model changes only a 
little part of Ne2000 virtual NIC and adds a small patch to the 
Xen hypervisor. It does not affect the reliability and 
performance of Xen hypervisor. By moving the state 
information of Ne2000 virtual NIC to I/O shared page, a lot of 
register read operations and state register I/O requests can be 
processed in Xen directly. This model reduces the switches 
between Xen and domain0, shortens the data transfer path, and 
improves the Ne2000 virtual NIC performance.  
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Figure 4.  optimization architecture overview 

C. Implementation  
To implement the optimization model, first move the 

Ne2000State data structure, then redefine the initialization 
function and at last, redefine the I/O handle functions. 

1) NE2000State: Move NE2000State data structure from 
Ne2000.c to shared_iopage_t data structure in ioreq.h. Thus 
both domain0 and Xen hypervisor have access to it. It means 
that we move the data structure in QEMU to Xen hypervisor. 
To add NE2000State as a member to vcpu_iodata is relatively 
simple: 

struct vcpu_iodata { 
    struct ioreq      vp_ioreq;    /* Event channel port */ 
    unsigned int   vp_eport;   /* vcpu uses it to notify DM */ 
    NE2000State ne_shared;  /*added to vcpu_iodata*/ 

}; 

2) NE2000 initialization: The initialization function 
pci_Ne2000_init is modified to get the Ne2000 state 
information contained in vcpu_iodata, in the following way: 

NE2000State *share=&(shared_page->vcpu_iodata[send 

_vcpu].ne_shared); 

When the state information from the shared I/O page is 
obtained, we will call pci_register_device to register the virtual 
device and pci_register_io_region to register the corresponding 
read and write functions.  

3) Switch and I/O operation functions: Now both domain0 
and Xen hypervisor can manipulates Ne2000 NIC registers. 
The next step is to move those functions which can process the 
requests without domain0’s assistance to Xen hypervisor. We 
mainly ported Ne2000_ioport_write and Ne2000_ioport_write 
to Xen hypervisor. As not all of the requests can be handled by 
our modified functions, a switch is needed to judge whether the 
request can be handled and those requests that cannot be 
handled will be sent to domain0 to process it as usual. 

D. Data transfer flow  
To further understand how the optimization model works 

and make a comparison between it and the original model, 
Fig.5 is referred. It describes the work flow of the optimization 
model. After moving those functions which don’t need the help 
of domain0 to Xen hypervisor, the original data transmit path 
was shortened as Xen will handle it directly and did not need to 
send interrupt to domain0 and switch to it. This leads to 
performance improvement as the experiment results 
demonstrate in section 4. 

Taking data transfer as an example, the optimization model 
works in the following way: 

1) When the HVM guest domain sends data packet to other 
machine, it will write the control register or state register of 
Ne2000 virtual NIC. IN/OUT instruction will cause VM Exit 
and traps in Xen.  

2) Xen gets control of CPU and calls function 
vmx_vmexit_handle, which will read reasons of VM Exit from 
VMCS structure. The hypervisor will get the detail information 
about the I/O operation, such as I/O type, I/O port address, data 
length, etc. vmx_vmexit_handle will call vmx_io_instruction to 
handle I/O operations, which will invoke send_pio_req 
function later. 

3) Send_pio_req will analyze the I/O request information 
and call our switch to judge whether this request can be 
handled by our model.  

4) Described as the dashed line in Fig.5, if the request can 
be handled in Xen, the request will be sent to the modified 
Ne2000 I/O functions immediately, and the results will be 
written to the shared I/O page. As soon as this process finished, 
it will notify Xen hypervisor. It is observed in Fig.5 that the 
data will flow in the dashed line. Hence the data transfer path is 
greatly shortened compared with the original model.  

5) If this request cannot be handled by Xen alone, the 
switch places the I/O request in the shared I/O page and 
notifies domain0 to handle it by the original way shown in 
Fig.3.  

Compared Fig.3 with Fig.5, our optimization model greatly 
shortens the data transfer path by intercepting I/O requests and 
handling it immediately. In this way we reduced the switch 
between the Xen hypervisor and domain0, which is the major 
reason for the high performance degradation, and thus 
improved the performance of Xen network virtualization. 
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Figure 5.  Data Transfer flow in the optimized model 
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V. EXPERIMENTAL RESULTS AND EVALUATION  
The optimization was implemented on Xen 3.0.4, running a 

Linux kernel 2.6.16.33. We use two testing machines, machine 
A with Intel CoreTM2 Duo 1.86GHz processor with VT-x 
support, 4MB L2 cache, 1GB memory; machine B with Intel 
Pentium D 3.00GHz processor, 2MB L2 cache, 1GB memory. 
We configured two guest VMs on machine A with 512MB 
memory which installed Windows XP sp2 operating system. 
VM1 uses the original Ne2000 virtual NIC and VM2 uses our 
optimized virtual NIC. 

A. Evaluation methodology 
To evaluate the performance of the optimization, the 

experiment compares the throughput, TLB and cache miss, 
CPU overheads and VM Exit between the original network 
model and the optimized model. 

For the testing benchmarks, three different benchmarks are 
employed, CHARIOT to measure the throughput and response 
time, Xenoprof to measure the TLB and cache misses, 
Xentrace to measure the number of VM Exit, and Linux top is 
adopted to analyze CPU overheads. 

B. Throughput Performance and latency 
In the experiment, CHARIOT endpoints run on VM1, VM2 

and machine B separately. VM1 and VM2 sends 2000 records 
with different record size to VM3 at the speed of 50 records per 
second. In such way, the throughput and latency is measured. 
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Figure 6.  Throughput comparison results 

Fig.6 shows the throughput results while sending records at 
different size between VMs and Machine B. As demonstrated 
in this figure, the optimization model improved the throughput 
by a factor range from 1.43 to 1.86 with the average of 1.56. 
The experiment also shows that when sending small records, 
the latency of the optimized virtual NIC is 0.001s, which is 
improved by 100% compared to the original 0.002s. When the 
size of the record increases to 10000000Bytes, the latency of 
our optimized virtual NIC is 2.713s, which is improved by a 
factor of 1.56 compared to the original 4.244s. 

C. TLB and Cache Miss  
We use Xenoprof[6]workload to evaluate the TLB and 

cache miss results of the optimization model. In the experiment, 
Xenoprof benchmark measures the TLB and cache miss when 
sending 109 data with Chariot from VM1 and VM2. The 
experiment shows that the TLB misses does not concentrate on 
several functions but scatters in domain0. This is quite similar 
to the conclusion in Menon’s discovery [6]. In our 
configuration, we set the time counter to 10000, thus Xenoprof 
will sample every 10000 clock cycle. 

In the experiment, in the original model, 1116 ITLB miss, 
135661 DTLB miss and 45679 L1 cache miss happened; while 
in the optimized model, 704 ITLB miss, 25506 DTLB miss and 
25506 L1 cache miss happened. These results show that the 
ITLB miss improves by 40% and the DTLB miss improves by 
81%. 

Table 2 shows the detail ITLB, DTLB and cache miss 
comparison (in percent) between the original Ne2000 virtual 
NIC and the optimized Ne2000 virtual NIC on most important 
function. It shows that the function call of 
Ne2000_ioport_write is dramatically reduced. In addition, as in 
the optimization Virtual NIC, most requests need not to deliver 
request to QEMU, the evtchn_do_upcall, which switch from 
Xen hypervisor to domain0, was reduced too. 

D. CPU Overheads and VM Exit 
Due to the increase of throughput, the data transfer time is 

greatly reduced, and the number of VM Exits during sending 
109 Bytes record is also reduced. Experiment results show that 
in the original Ne2000 virtual NIC 30427338 VM Exits 
happened, while in the optimized Ne2000 virtual NIC only 
26613669 VM Exits happened. The total number of VM Exits 
reduces 12.5%. 

TABLE II.  XENOPROF ITLB, DTLB, AND CACHE MISS RESUTLS 

Module Function Original Ne2000 Virtual NIC Optimized Ne2000 Virtual NIC 
ITLB 

miss % 
DTLB 
miss % 

L1 cache 
miss % 

ITLB 
miss % 

DTLB 
miss % 

L1 cache 
miss % 

qemu-dm   cpu_handle_ioreq 0.5474 1.5288 1.6616 0.9943 0.8062 1.3487 
vmlinux-syms 
-2.6.16.33-xen 

evtchn_do_upcall 0.6316 0.3745 0.6155 0.1420 0.6155 0.6316 

qemu-dm Ne2000_ioport_write  0.3789 2.0072 0.2256 0.1420 0.0258 0.2117 
qemu-dm main_loop_wait 0.2947 3.9097 1.0683 0.1420 2.638 1.4154 
qemu-dm Ne2000_ioport_read 2.9830 0.1231 - 0.5474 0.1369 - 
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In order to evaluate the impact of our optimized model to 
CPU overheads, we use Linux Top to measure the CPU 
overheads of QEMU-dm. In the original Ne2000 virtual NIC, 
the CPU utility of qemu-dm is 68.7887% when sending the 109 

Bytes records. In the optimized Ne2000 virtual NIC, the CPU 
utility is 18.459%. The CPU overheads reduced by 73%. The 
reasons of CPU overheads improvements lie in the shortening 
of I/O transfer path and the reduction of cache miss. 

VI. RELATED WORK  
As performance becomes increasingly important to Virtual 

Machine Monitor (VMM), several previous studies work on 
the performance of Xen hypervisor to discover which part 
should accounts for the performance degradation. Menon et al, 
introduce a system-wide profiling tool Xenoprof for Xen which 
was ported from Oprofile [6]As described in section 1, Menon 
reported significant performance degradation of Xen network 
virtualization. 

As is reported by [11], the Xen hypervisor and domain0 
consume as much as 70% of the execution time during network 
transfers in Xen network virtualization architecture. Many 
studies have been carried out to address this performance 
problem. Aravind Menon et al [7]investigate three techniques 
to optimize network virtualization in Xen. They define a new 
network interface, optimize the implementation of I/O channel 
between domain0 and guest domain and provide support for 
the use of superpages in guest OS. It is reported that they 
improved transmit performance by a factor of 4.4 and receive 
performance by 35%. Unlike our research, their work was 
designed for para-virtualization guest domains. Paul Willmann 
et al [11]present hardware and software mechanism to enable 
concurrent direct network access by guest OS. With their 
architecture, they reduced CPU overheads, improved the 
transmit performance by a factor of 2.1 and receive 
performance by a factor of 3.3.  

VII. CONCLUSION AND FUTURE WORK  
This paper presents a new implementation to optimize Xen 

HVM guest network virtualization by shortening the data 
transfer path with detail throughput, TLB and cache miss, CPU 
overheads experiment results. From the experimental results, it 
is demonstrated that the optimized model can improve the 
HVM guest network throughput by a factor of 1.56. The TLB 
and cache miss and CPU overheads also improved a lot in the 
new network virtualization model. 

As I/O devices in Xen are all emulated by QEMU, the data 
transfer path and process mechanism is similar to Ne2000 
virtual NIC. Based on this similarity, we think that the 
principle behind our optimization model applies to other virtual 
device as well.  

The optimization model mainly reduces switch between 
domain0 and Xen hypervisor. The switch between domainU 
and Xen remains as a future work to be solved. 
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