
Using Virtualization to
Improve Software Rejuvenation

Luis Moura Silva, Javier Alonso, and Jordi Torres

Abstract—In this paper, we present an approach for software rejuvenation based on automated self-healing techniques that can be

easily applied to off-the-shelf Application Servers. Software aging and transient failures are detected through continuous monitoring of

system data and performability metrics of the application server. If some anomalous behavior is identified, the system triggers an

automatic rejuvenation action. This self-healing scheme is meant to disrupt the running service for a minimal amount of time, achieving

zero downtime in most cases. In our scheme, we exploit the usage of virtualization to optimize the self-recovery actions. The

techniques described in this paper have been tested with a set of open-source Linux tools and the XEN virtualization middleware. We

conducted an experimental study with two application benchmarks (Tomcat/Axis and TPC-W). Our results demonstrate that

virtualization can be extremely helpful for fail-over and software rejuvenation in the occurrence of transient failures and software aging.

Index Terms—Software rejuvenation, software aging, virtualization, self-healing.

Ç

1 INTRODUCTION

AVAILABILITY of business-critical application servers is an

issue of paramount importance that has received
special attention from the industry and academia in the last

decades. According to [1], the cost of downtime per hour

can go from 100,000 for online stores up to 6 million dollars

for online brokerage services. The industry has adopted

several clustering techniques [2] and today most business-

critical servers apply some sort of server redundancy, load

balancers, and fail-over techniques. Those techniques work

quite well to recover from application crashes. The latest
trend goes toward the development of self-healing techni-

ques [3] that would automate the recovery procedures and

prevent the occurrence of unplanned failures, whenever

possible.

The idea behind this paper is to develop further the

concept of software rejuvenation [4]. This technique has

been widely used to avoid the occurrence of unplanned

failures, mainly due to the phenomenon of software aging.

The term software aging describes the progressive degrada-

tion of the running software that may lead to system crashes

or undesired hang-ups [4]. It is likely to be found in any type

of software that has some complexity, but it is particularly

troublesome in long-running applications. It is not only a

problem for desktop operating systems: it has been

observed in telecommunication systems [5], Web servers

[6], [7], enterprise clusters [8], OLTP systems [9], and

spacecraft systems [10]. This problem has even been

reported in military systems [11] with severe consequences

such as loss of lives.

There are several commercial tools that help to identify

some sources of memory leaks during the development

phase [12], [13]. However, not all the faults can be easily

spotted during the final testing phase. And those tools

cannot work in third-party software packages when there is

no access to the source code. This means that existing

production systems have to deal with the problem of

software aging while in production stage. So, in a wide

number of cases the only choice is to apply some sort of

software rejuvenation [4].

Two basic approaches for rejuvenation have been

proposed in the literature: time-based and proactive rejuve-

nation. Time-based rejuvenation is widely used today in

some real production systems, such as Web servers [14], [15].

Proactive rejuvenation has been studied in [8], [9], [14], [15],

[16], [17], [18], [19], [20], [21]. It is widely understood that this

second technique provides better results than the previous

one, resulting in higher availability and lower costs. Some

recent experimental studies have proved that rejuvenation

can be a very effective technique to avoid failures even when

it is known that the underlying middleware [21] or the

protocol stack [22] suffer from clear memory leaks.

Several studies published in the literature tried to define

some modeling techniques to find the optimal time for

rejuvenation [14], [15], [16], [23]. The ROC project from

Stanford [24] presented the concept of microrebooting to

reduce the rejuvenation overhead: instead of applying

restarts at the application- or system-level, they just reboot a

very small set of components. Their main goal was to decrease

the Mean-Time-To-Repair (MTTR) of the applications. The

published results were quite promising [25]: They were able

to decrease the time-to-repair by two orders of magnitude. In

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009 1525

. L.M. Silva is with the Departamento de Engenharia Informática,
University of Coimbra, Polo II, 3030 Coimbra, Portugal.
E-mail: luis@dei.uc.pt.

. J. Alonso and J. Torres are with the Universitat Politècnica de Catalunya,
UPC Campus Nord, C6-207, Jordi Girona 1-3, 08034 Barcelona.
E-mail: {alonso, torres}@ac.upc.edu.

Manuscript received 1 June 2008; revised 22 Dec. 2008; accepted 23 Feb. 2009;
published online 24 July 2009.
Recommended for acceptance by D.R. Avresky, H. Prokop, and D.C. Verma.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-06-0262.
Digital Object Identifier no. 10.1109/TC.2009.119.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



[26], it was well explained that it is more valuable to approach

the goal of 100 percent availability by reducing the MTTR

instead of paying efforts to increase the Mean-Time-Between-

Failures (MTBF). If we cut down the MTTR, we can mitigate

the impact of an outage to the end user, and this fact is of

utmost importance for the Internet applications.

Driven by the results of the ROC project and by the goal

of decreasing as much as possible the MTTR of recovery

techniques, we decided to set up a project to devise a

rejuvenation mechanism that could be applied in off-the-

shelf Application Servers without reengineering the appli-

cations or the middleware. These rejuvenation mechanisms

should minimize the MTTR of the applications.

In this context, we decided to make use of virtualization

technology [27], [28] since it can be a good recipe to optimize

the process of software rejuvenation. Encouraged by this

concept, we have done a prototype implementation of our

VM-based rejuvenation approach followed by an experi-

mental study. The experimental results are presented in this

paper.

The rest of the paper is organized as follows: Section 2

elaborates a bit further on our rationale for a new scheme of

software rejuvenation; Section 3 describes our software

rejuvenation and self-healing techniques and outlines their

simplicity; Section 4 presents the results of our experi-

mental study; Section 5 concludes the paper.

2 RATIONALE FOR A NEW SCHEME OF SOFTWARE

REJUVENATION

Here, we explain the guidelines of our project, where we
developed a software rejuvenation technique.

1. Our rejuvenation mechanism should be easy to
apply in off-the-shelf Application Servers without
reengineering the applications or the middleware.

2. The mechanism should provide a very fast recovery
to reduce the MTTR to the minimum: If possible, we
should achieve a zero downtime even in case of
restart.

3. The mechanism should not lose any in-flight request
or session data at the time of a restart or rejuvena-
tion; the end user should see no impact when there is
some restart in the server.

4. The software infrastructure should automate the
rejuvenation scheme to improve the self-healing
abilities of the server.

5. The rejuvenation mechanism should not introduce a
visible overhead during runtime.

6. The scheme should not require any additional
hardware: it should work well in single server and
in cluster configurations.

7. The mechanism should be easy to deploy and
maintain in complex IT systems.

We are mainly focused on the healing of software aging

and transient failures. Permanent software bugs, operator

mistakes, and hardware failures are out-of-scope of our

mechanism. Several studies have reported the large percen-

tage of transient software failures and the importance of

software aging in 24 � 7 applications [8] and this is our

target failure model.

The concept of microrebooting, from the ROC Project

[25], was likely the most advanced contribution in the area.

However, that scheme does not fulfill some of our guide-

lines: points 1, 3, and 7. First, the microrebooting technique

requires the re-engineering of the middleware and the

restructuring of the applications to make them “crash-

only.” The microrebooting concept was experimented in an

instrumented version of JBoss, and it cannot be easily

applied to other application servers. Second, in their scheme

some of the work-in-progress can be lost during a restart

operation. For instance, in [29], the authors presented an

interesting result: when they applied a restart they lost

3,900 requests, but when they used the microreboot of a

component they lost only 78 ongoing requests. Even so,

some requests were still lost, which means that some of the

end users will see the impact of that microrestart. This may

undermine their confidence level in the Website, or may

cause some inconsistency in enterprise applications.

We feel that when applying a rejuvenation action to

avoid software aging, it is mandatory that we do not lose

any request at all: A restart should be fully transparent to all

the end users. And it is important that the MTTR for a

protective restart should be zero, if possible. A clear recipe

to avoid downtime when there is a server restart is to use a

cluster configuration: When one server is restarted, there is

always a backup server that assures the service. However,

even in these cluster configurations, the server restart has to

be carefully done to avoid losing the work-in-progress in

that particular server. Using a cluster for all the application

servers in an enterprise represents a huge increase in terms

of budget: in [2], it is argued that the adoption of a cluster

may represent an increase of 4-10 times more in the budget,

when compared with a single-server configuration. If we

increase the number of server machines and load balancers,

we are also increasing the cost of management and Total-

Cost-of-Ownership (TCO).

In order to achieve a low MTTR for planned restarts

even in a single-server configuration, we decided to exploit

the use of virtualization. With this technique, we are able to

optimize the rejuvenation process without requiring any

additional hardware. Our rejuvenation mechanism is

totally supported by software, and can be easily deployed

in existing IT infrastructures. It can be applied on cluster

configurations or single-server applications.

3 VM-REJUV: THE FRAMEWORK

Our rejuvenation mechanism can be applied in any

Application Server: it can be Websphere, WebLogic, JBoss,

Tomcat, Microsoft.Net, or others. All the persistent state of

the application is maintained in a database that should be

made reliable by some RAID topology. An exception is made

to the state of the application that is maintained in session

objects. This session data cannot be lost in a restart operation.

We do not require any restructuring of the applications or

the middleware container and the scheme should work

1526 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



seamlessly with any server in the market. The main

requirement is the use of a virtualization middleware like

VMWare [30], XEN [31] or Virtuoso [32].
We have adopted XEN in our experiments, but all the

software infrastructure that was developed could be used

in any other virtualization middleware. On top of our

virtualization layer, we create three virtual machines per

application server: one VM to run a software load balancer

(VM-LB), one VM where we run the main application

server, and a third VM where we execute a replica of the

application server that works as a hot standby.

VM-LB will be responsible for the management of fail-

over and rejuvenation of the two virtual servers. It will also

run some software modules for the detection of aging and

transient failures. When something is detected, it will

trigger a rejuvenation action in the primary server. In this

action, we do not restart the main server right away: first,

we start the standby server, the session state is migrated to

that server and all the new requests and sessions will be

diverted to the standby server. This is important to avoid

losing on-going requests. Fig. 1 presents the main modules

of our rejuvenation framework. VM1 runs the following

software modules:

. a Load Balancer (LB).

. A module that collects system data from the
application servers.

. a module that applies some techniques for aging
forecast.

. another module that detects transient failures in the
target servers.

. a software watchdog.

. the coordinator of the rejuvenation procedure.

In our experiments, the LB module was implemented by

using the Linux Virtual Server (LVS [33]). LVS is a 4-layer

load balancer that also provides IP fail-over capabilities and

a myriad of balancing policies. All the client requests are sent

to the LVS that forwards the request to the active application

server. For the Watchdog functionality, we used the

ldirectord tool [34]. This tool is bundled together with

LVS and has direct access to the LVS server table. It executes

HTTP probing to some static HTML object and is used to

detect server outages. We have enhanced this tool to avoid

the occurrence of false alarms. For the system monitoring,

we used Ganglia [35]. It requires the installation of a system

probe in every target server (S-Probe). The Ganglia probe

does the monitoring of several system parameters like CPU,

memory usage, swap space, disk usage, number of threads,

I/O traffic, connection to the database, among other system

parameters. All the collected data is assembled and sent to a

main daemon running in VM1 (Data Collector). This

module applies some detection rules and provides the data

feed for two of the other modules: the Aging Detector and

the Anomaly Detector. These two modules use some

detection techniques based on the data collected by different

sensors:

1. system-level parameters, collected by Ganglia.
2. communication protocol errors (HTTP errors, TCP-

IP errors, communication time-outs) that are col-
lected by the watchdog and the P-Probes.

3. error codes and anomaly detection by runtime
searching in the log files.

4. application-specific sensors (HTML errors in mes-
sage responses) that are collected by the P-Probes.

5. performability metrics like the continuous surveil-
lance of the overall throughput and latency as well
as the fine-grain latency per service component,
collected by the P-Probes.

The Aging Detector is a core module in our system: in

the first version of our project this module detects potential

anomalies and evidences of software aging by applying

some reactive rules to the monitoring data. The surveillance

of external QoS metrics has been proved relevant in the

analysis of Web server and services [37] and it has been

highly effective in the detection of aging and fail-stutter

failures [38] in a previous study that was presented in [21].

We have used similar techniques in this paper. In the future,

we plan to enhance this module with statistical learning

techniques [23] and time-series analysis [39] to provide some

more accurate forecast of the occurrence of software aging.

The Anomaly Detector is a complement of the above

module: It detects application-level anomalies, protocol

errors, log errors, and threshold violations in system

parameters. System data is collected in runtime and the

patterns for default and acceptable behavior continuously

monitored. If some of the system parameters exceed (above

or below) the expected values, some triggers will be launched

by this module. The module also includes direct detection of

errors in log files and communication messages.

In the other virtual machines (VM2 and VM3), we

execute two replicas of the Application Server; both servers

should have access to a database in the back-end. In each of

these VMs (VM2 and VM3), we install a Software Rejuvena-

tion Agent (SRA-Agent) that is responsible for the

rejuvenation operation. This module is directly coordinated

by the SRA-Coord. There are three other probes that should

be installed in both VMs:

1. S-Probe corresponds to the Ganglia probe;
2. Log Probe is a simple software module that

performs some anomaly analysis at the logs of the
container;

SILVA ET AL.: USING VIRTUALIZATION TO IMPROVE SOFTWARE REJUVENATION 1527

Fig. 1. VM-Rejuv framework.

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



3. P-Probe, that is a small proxy installed in front of
the application server: It filters some error conditions
and collects some fine-grain performance metrics,
like throughput and latency. This P-Probe is able to
distinguish latency variations per service component
that is externally accessible by the end users. In the
case of a Java-based container like Tomcat, we used
the servlet filter capability [36] to implement this
functionality.

The SRA-Coord module works in coordination with the

two SRA-Agents to achieve a clean restart procedure.

During the server migration process, the main concern is to

avoid losing any ongoing request that is being executed in the

primary server. There is a window of execution where we

have both servers running in active mode and we need to

assure a clean restart. The primary server is able to be

restarted only when all its session data has been migrated to

the secondary server, all the in-memory caches should be

flushed to the database and the server should have no more

ongoing requests. When all these conditions are executed, the

local SRA conducts a rejuvenation of the server. By saving all

the session state to the standby server, we might be able to

achieve one of the fundamental features of crash-only

software [40]. In a nutshell, crash-only software is structured

in such a way that it is able to handle failures just by restarting

without requiring any complex recovery procedure.

All these software modules were implemented by using

open-source tools, like LVS, ldirectord, and Ganglia.

The deployment of this framework is straightforward and

does not require any change to the applications or the

middleware containers.

Although we have explained the main modules of our

framework, the reader should take into account that the

main focus of this paper is to present an experimental study

of our rejuvenation mechanism.

4 EXPERIMENTAL STUDY

To study the effectiveness of our rejuvenation scheme, we

used two client/server application benchmarks and

conducted an experimental study in a dedicated cluster

or machines.

4.1 Experimental Environment

4.1.1 Application Benchmarks

We selected two application benchmarks that represent

typical Web-based applications: one of them used SOAP as

the communication protocol, while the other is based on

HTTP protocol.

Tomcat/Axis. This refers to a synthetic Web service that

implements a simple shopping store with a database back-

end (MySQL). The client application may search for products,

add them to a shopping cart and run for checkout. This

application used SOAP as the communication protocol. We

chose Tomcat/Axis [41] as a SOAP Router since we already

knew from a previous study [21] that Axis 1.1.3 was suffering

from memory leaks.

TPC-W. TPC-W is a benchmark that simulates a transac-

tion-oriented Web application and has been used for

performance benchmarking of web servers [42]. It simulates

three basic profiles for browsing, shopping, and ordering. In

this particular case, the benchmark was implemented in Java

by a team of CMU [43] and made use of Tomcat and MySQL.

Most of the load of this application is kept in the database

layer rather than in the Web front-end.

From the initial experiments with TPC-W, we did not

detect any visible problem of software aging. To measure

the effectiveness of our detection mechanisms, we had to

inject synthetic aging in the application. For this purpose, we

implemented a small fault injector that works as a resource

“parasite”: It consumes system resources in competition

with the application. This fault injector has support for

several resources: CPU, memory, disk, threads, database

connections, and IO traffic. We have only used the memory

consumption option with an aggressive configuration to

speed up the effects of (synthetic) aging in our experiments.

This technique to inject memory leaks is similar to the one

described in [18].

4.1.2 The Workload Test Tool

To collect some performance metrics, we used a multiclient

tool called QUAKE [44] that was implemented in our

Laboratory. This tool permits the launching of simultaneous

multiple clients that execute requests in a server under test.

The tool allows several communication protocols, like

TPC-IP, HTTP, RMI, and SOAP. It conducts automated test

runs according to some predefined parameters and work-

loads. The workloads can vary among Poisson, Normal,

Burst, and Spike. In this study, we just used the burst

distribution to speed up the occurrence of software aging. It

was extremely useful to study the behavior of our rejuvena-

tion mechanism with automated test runs and automated

result collection.

4.1.3 The Experimental Setup

In our experiments, we used a cluster of 12 machines:

10 machines running the client benchmark application, one

Database Server (Katrina or Wilma), and our main server

(Tania or Nelma) running XEN and the three virtual

machines. All the machines are interconnected with a

100 Mbps Ethernet switch. The detailed description of the

machines is presented in Table 1.

1528 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

TABLE 1
Configuration Parameters of the Machines

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



We used Xen version 3.0.2 [31] configured with three

virtual machines: two virtual machines with 700 MB

memory for the application servers and a third VM with

256 MB memory to run LVS, the ldirectord watchdog

and our software modules. Both virtual machines run Linux

2.6.16.21-0.25-xen with 1,024 MB swap space and one

virtual CPU. In some of the experiments, where we needed

to test with two active application servers, we used the

Katrina server and five virtual machines.

4.2 Experimental Results

4.2.1 What Is the Overhead of Using XEN and

VM-Rejuv?

In the first experiment, we decided to evaluate the

performance penalty for using a virtualization middleware

(Xen) and our VM-Rejuv framework. We started to use the

Tomcat/Axis application benchmark. We executed several

short-time runs (15 minutes) in burst mode. From these

runs we removed the initial 5 minutes, considering as the

warm-up period. So, the total run length was 10 minutes.

The comparison of throughput is presented in Fig. 2. As

can be seen there is some overhead for using XEN and our

VM-Rejuv framework, when compared with a simple run

on top of the operating system.

Table 2 gives a more precise comparison in terms of

average throughput and total number of requests. From

that data, we can measure an overhead in terms of total

number of requests served in that time interval. In the case

of the Tomcat/Axis benchmark, we can see that XEN

introduced an overhead of 12 percent, while our mechan-

ism added an additional overhead of 2 percent.

The results for TPC-W were a bit different. In the

specification of TPC-W [42], the client code includes a

“think time” between requests of the order of 7-70 seconds.

This benchmark tried to simulate the access pattern of a

Web user to an e-commerce site and this “think time” goes

along with that pattern. In this run, we set the “think time”

to a fixed value, corresponding to the minimum of 7 seconds.

Results are presented in Fig. 3 and the summary in Table 3.

As can be seen, the overhead of using XEN is

1.1 percent and the overhead of VM-Rejuv is almost

negligible (0.2 percent). This difference in the overhead

comes from the fact that this benchmark is not using a

continuous burst distribution, as in the previous case of

Tomcat/Axis. But it is important to note that the “think

time” between requests that is used in TPC-W represents a

more likely workload of Websites.

SILVA ET AL.: USING VIRTUALIZATION TO IMPROVE SOFTWARE REJUVENATION 1529

Fig. 2. Comparing the throughput of Tomcat/Axis on top of OS, on top of XEN, and using VM-Rejuv.

TABLE 2
Comparing the Overhead of Virtualization and VM_Rejuv (Tomcat/Axis)

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



4.2.2 Is VM-Rejuv an Effective Technique?

The next step was to evaluate the effectiveness of our

automated rejuvenation mechanism. We made use of the

application benchmarks and configured the rejuvenation

mechanism to be triggered when there is some threshold

violation in one of the external QoS metrics. In this case, we

just observed the throughput of the application: Basically, if

the application starts to get slower over time, there is a high

probability we are facing a fail-stutter behavior [38].

In the case of Axis, we already knew that version 1.3 is

suffering from severe memory leaks [21]. When doing some

experiments with a burst workload and 10 simultaneous

clients, we observed a crash in the application server in less

than 5 hours. So, we measured the throughput in time runs

of 4 hours when using the application and no rejuvenation.

After that, we compared with two scenarios where we

applied our rejuvenation scheme when there was a violation

in the throughput SLA (Service-Level Agreement). In these

experiments, we set up two values for the SLA: 50 percent

and 75 percent. When the external throughput decreases to

lower than 50 percent or 75 percent of the maximum value

(measured when the system was running at the beginning),

the VM-Rejuv applies a rejuvenation action. Results are

presented in Fig. 4.

This figure shows the effectiveness of our automated

rejuvenation. If the system starts to get slower a rejuvenation

action is applied and for some time the maximum

performance figures are restored. We do avoid a crash of

the application due to the internal memory leaks of

Axis 1.1.3. Without the usage of our scheme the application

would crash approximately after 4.5 hours of continuous

burst execution. Fig. 5 presents related data from the same

experiment: this time the figure presents the observed

latency (in milliseconds) when applying an action of

rejuvenation when there was a violation of 50 percent and

75 percent, compared with the normal case when there is no

rejuvenation. We can see that when applying the mechanism

of rejuvenation, the latency of requests is kept to an

acceptable value. Otherwise, the latency would start grow-

ing until the client starts receiving some time-out replies due

to the unavailability of the SOAP server application. This

data can be represented in this format due to the burst

nature of the associated workload.

1530 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

Fig. 3. Comparing the throughput of TPC-W on top of OS, on top of XEN, and using VM-Rejuv.

TABLE 3
Comparing the Overhead of Virtualization and VM_Rejuv (TPC-W)

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6 presents the results for a similar experiment with

TPC-W. In this case, we used a memory fault loader with

parasitic behavior similar to the one presented in [18], to

resemble the occurrence of similar scenario of software

aging due to memory leaks. In these experiments, we

injected a memory leak of 1 Kb per request, which is an

aggressive leak. The idea was to observe very quickly the

crash of the application to compare the effects of our

rejuvenation mechanism. In Fig. 6, we can observe that

TPC-W application with that synthetic memory leak died

after 1.475 hours of execution.

In Fig. 7, we present the latency of requests, measured in

milliseconds, when applying the rejuvenation mechanism

compared with default case. Without the rejuvenation

scheme, the latency of requests grows considerably and the

client starts receiving time-outs before the crash of the server.
With the automated rejuvenation scheme, we were able

to avoid a crash and kept a sustained level of perfor-

mance, within the limits defined for the Throughput SLA.

SILVA ET AL.: USING VIRTUALIZATION TO IMPROVE SOFTWARE REJUVENATION 1531

Fig. 4. Throughput of requests when applying rejuvenation to Tomcat/Axis.

Fig. 5. Latency of requests when applying rejuvenation to Tomcat/Axis.

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



With these results, we start considering this rejuvenation
mechanism as a crucial module of our software frame-
work that aims to provide self-healing abilities for the
application servers.

4.2.3 What Is the Downtime of Our Rejuvenation

Scheme?

In the next step, we wanted to evaluate the potential
downtime for the application when there is a restart, as

well as the number of failed requests and the potential loss of

session data during the rejuvenation process. These results

are of extreme importance, according to guidelines 2 and 3

described in Section 2. We conducted four experiments in

the same target machine using the Tomcat/Axis application:

1. one run, where we applied a rejuvenation action at
the time of 300 seconds,

1532 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

Fig. 6. Throughput of requests when applying rejuvenation to TPC-W.

Fig. 7. Latency of requests when applying rejuvenation to TPC-W.

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



2. another run, where we triggered a Tomcat restart at
exactly that time,

3. a third run, where we applied a restart in the XEN
Virtual Machine, where the main server was running,
at the exact same time (300 seconds), and finally,

4. a last one, where we executed a full machine reboot
at that execution time.

The results are presented in Fig. 8. That figure presents

an execution window of 600 seconds. We adopted that

format for an easy comparison with a similar result

achieved by George Candea in the work of microrebooting,

published in [29]. As can be seen, our rejuvenation scheme

achieves a zero downtime. The clients do not even notice

there was a rejuvenation action in the active server. In the

other cases, there was some visible downtime for the end

users: a Tomcat/Axis restart produced a visible downtime

of 12 seconds; the restart of a XEN VM resulted in a visible

downtime of 56 seconds; and finally a machine reboot

represented a downtime of about 200 seconds.

The next step was to analyze the number of failed

requests caused by one restart operation. Results are

presented in Table 4. That table presents the average

throughput during a test run of 10 minutes, considering

there was one restart operation. We present the total number

of requests executed during that period, the number of

failed requests, the number of slow requests, and the

perceived downtime, as measured from the client’s side.

As can be seen, a server restart using our rejuvenation

scheme resulted in zero failed requests: No work-in-

progress was lost due to that restart. This was important to

fulfill our guideline 3. The implementation of microreboot-

ing produced a very low MTTR (even so, higher than zero)

but it allowed the occurrence of some failed requests: as

presented in a particular experiment in [29], a microreboot of

an EJB component would still cause 78 failed requests. This

means a microreboot was not transparent for the end users

and may allow a few visible failures. In our case, we do

provide a clean restart of the server with no perception for

the end user and no impact in the application consistency.

The definition of “slow requests” corresponds to those

requests that have a response time higher than 8 seconds.

Here, we adopt the same threshold as the one proposed in

[29]: It corresponds to the SLA usually used by production

Websites as the maximum acceptable response time.

There were no slow requests when we applied a VM-

restart or a node reboot: those operations caused refused

connections that were counted as failed requests but none

of them was classified as a slow request. The time-out

mechanism in these two cases is completely different from

the case when the machine is available but the application

server (Tomcat) is restarting. This is related to the TCP-IP

mechanism for time-outs [45], and explains why the

number of failed requests when there is a machine reboot

was not proportional to the downtime.

The major achievement of our rejuvenation mechanism

was the zero downtime. This result has a strong impact if

we want to do some simple calculations on the resulting

availability when we apply prophylactic restarts (rejuvena-

tion actions). Without considering unplanned failures, if we

want to achieve a 99.999 percent availability in a whole year

in a single-server machine, then we have the following limits

for the number of restarts: we can only do one node reboot in

that whole year; or, five restarts in the XEN virtual machine

where the server is running; or, alternatively, if it works out,

25 restarts in the Tomcat/Axis application server. If the target

application server is installed with our VM-Rejuv frame-

work then we can apply a huge number of planned restarts

per year within the five nine figure: the only constraint is the

minimum acceptable interval between restarts.

4.2.4 Does Our Rejuvenation Scheme Maintain All the

Session Data? What Is the Overhead for That?

In this section, we do present some results about the

session replication scheme of Tomcat. To avoid losing

session data, we need to replicate the session objects from

SILVA ET AL.: USING VIRTUALIZATION TO IMPROVE SOFTWARE REJUVENATION 1533

Fig. 8. Client perceived availability for different restart mechanisms
(Tomcat/Axis).

TABLE 4
Comparing Downtime and Failed Requests with Different Restart Mechanisms

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



the primary to the secondary server. This replication

scheme may introduce some visible overhead, but it is of

great importance if we do not want to lose any session data

when there is a restart operation.

We have conducted an experiment of 15 minutes with

Tomcat/Axis configured with the session objects of 8 Kb

(typical session object size is less than this value). The

results are presented in Fig. 9. The figure presents two

scenarios: 1) one with session replication and 2) another

without it. We just presented the last 750 seconds of the

experiment, since we removed the warm-up time.

When using session replication, we did not lose any

session data and the application served a total of 107,301

requests during those 15 minutes. Without session replica-

tion, we observed 15 session errors and the application was

only able to serve 117,750 requests. The difference was

around 8.8 percent. With session objects of 1 Kb, we got an

overall difference of 4.9 percent in the number of requests in

that time period. To summarize: there is some overhead but

it is mainly visible when we are executing a continuous

burst workload, which was the case of Tomcat/Axis. In the

case of TPC-W, the overhead was negligible.

4.2.5 Is Our Rejuvenation Scheme Useful in a Cluster

Configuration?

So far, we have been testing our rejuvenation in single

servers. One key question still remains:

Is our scheme any useful when we have a cluster

configuration?

When we use a cluster, we have a load balancer box to

support for IP fail-over in the occurrence of a server crash.

Clusters are used to increase performance and to tolerate

failures. Our rejuvenation scheme is meant to avoid failures

due to software aging. So, it has a high potential of being

used in cluster configurations.

Suppose we have an application server that degrades over

time due to aging. If we replicate that application through

N servers, it will degrade in all the servers, probably with

different decay functions, but it will decay in the overall. If

we use our rejuvenation scheme, we can mitigate the impact

of these “fail-stutter” failures. We also have a way to restart a

server without losing any work-in-progress, something that

sometimes is not achieved when IT managers apply planned

restarts in servers belonging to a cluster.

To demonstrate the potential of our rejuvenation scheme

in clusters, we have set up the following experiment: we

executed the Tomcat/Axis application in a cluster config-

uration (using three virtual machines in XEN: one LB and

two active servers). In order to speed up the visualization of

the aging, we configured the JVM to 64 Mb. The throughput

curves of both servers are presented in Fig. 10. Since both

servers run the same application, they will suffer from

aging at a similar pace, if the load balancer is using a round-

robin strategy.

During this experiment, Server S1 had a crash after

1 hour of execution. LVS does the migration of all the

requests to S2. We decided not to restart S1 automatically to

observe the behavior of S2 without interference. Server S2

had a crash after 1.29 hours.

When S1 had a crash, we can see in the figure that the

throughput of S2 went temporarily down to almost zero.

This was caused by the sudden migration of all the new

requests to S2, supported by the fail-over mechanism of the

load balancer. But after that new peak, the performance

degrades until server S2 also crashes and the cluster

remains totally unavailable.

In Fig. 11, we can see the performance decay in the

overall throughput of the cluster, down to zero, assuming

there is no automatic restart in any crashed machine of the

cluster. We can also see the overall throughput when using

our rejuvenation scheme (with a trigger at 75 percent of the

throughput SLA).

Our rejuvenation mechanism was able to maintain a

sustained level of performance: the cluster did not face any

1534 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

Fig. 9. Comparing the overhead of session replication in Tomcat/Axis (session objects of 8 Kb).

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



performance failure or a complete crash (as in the default

case). There was no failed request when using rejuvenation,

while in the fail-over mode of the default cluster we noticed

2,223 failed requests. During the 4,800 seconds of the

experiment, the default configuration of the cluster was able

to serve a total of 231,044 requests from the clients. When

using our rejuvenation technique, the cluster managed to

serve 339,186 requests. This means that our mechanism

promoted an increase of about 46 percent in the perfor-

mance of the application.

We have done a second experiment where we included
an automatic restart in the default cluster configuration:
when the ldirectord detects a crash, it restarts the failed
server automatically. Fig. 12 presents a time window of
5 hours of execution.

The figure presents the cluster throughput when we use
our rejuvenation scheme compared to the default configura-
tion with automatic restart. Without our rejuvenation, there
were several crashes in the cluster and we lost 2,640 requests.
With our rejuvenation scheme, we had no failed request.
Comparing the total number of requests served, we have

SILVA ET AL.: USING VIRTUALIZATION TO IMPROVE SOFTWARE REJUVENATION 1535

Fig. 10. Throughput of two servers in a cluster, suffering from severe aging (Tomcat/Axis).

Fig. 11. Comparing the cluster throughput, with and without rejuvenation (Tomcat/Axis).

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



observed an improvement of 66 percent in the overall
performance.

This result proves the high potential of using our
rejuvenation scheme in cluster configurations: it does not
only avoid crashes due to aging, but also increases the
performance if the application is suffering from some
“fail-stutter” effect.

4.2.6 How Important Is the Use of a “Clean” Restart

Instead of Applying a “Blind” Restart?

In this experiment, we decided to compare the importance

of applying our “clean” restart mechanism when compared

with typical procedures: When there is a decision to trigger a

rejuvenation action, the server is restarted without any

extraordinary concern. We call this procedure a “blind”

restart.

In this experiment, we used a cluster with two active

servers. Our goal was to compare the effect of a “clean”

restart from our VM-Rejuv scheme with a “blind” restart of

Tomcat and a “blind” reboot of one active server. In this

configuration, our rejuvenation mechanism was also used

in the cluster configuration with two active servers. Results

are presented in Fig. 13.

This figure only presents a “zoom-in” of the results of

around 90 seconds. After 30 seconds, we applied a restart

action in S1 using our VM-Rejuv scheme, a “blind” restart of

server S1, and a “blind” reboot of server S1. In our scheme, we

had zero failed requests as opposed to the other schemes: The

“blind” restart produced 244 failed requests, while the

“blind” reboot led to 341 failed requests. These failed requests

happened even when we had a cluster configuration.

It can also be seen in the figure that there was a

“window” with a very low throughput right after the

“blind” restart. It was even more visible after the “blind”

reboot. That happens because when server S1 is restarted

1536 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

Fig. 12. Comparing the cluster throughput, with and without rejuvenation, but automatic restart (Tomcat/Axis).

Fig. 13. The impact of a “clean” restart when compared with a “blind” restart and a “blind” reboot (Tomcat/Axis).

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



there are several requests that get an exception and the LB

applies a fail-over to server S2. However, the XEN layer

gives more CPU to server S1 during the restart phase.

During that phase S2 does not get enough CPU and some of

the requests are not executed or executed with extra delay.

5 CONCLUSIONS

In this paper, we presented a simple but effective approach

for software rejuvenation: It can be applied to off-the-shelf

application servers, it achieves a zero downtime without

losing any work-in-progress and does not incur in a

significant performance overhead. It can be used in a single

server or in a cluster configuration without any additional

cost. We just require the use of a virtualization layer and the

installation of some software modules. The goal of our project

is to study the application of the software rejuvenation

technique as an important piece of the puzzle that is necessary

to provide self-healing abilities for application servers.

ACKNOWLEDGMENTS

This research was supported in part by the FP6 Network of

Excellence CoreGRID, funded by the European Commis-

sion (contract IST-2002-004265) and in part by the Spanish

Ministry of Education and Science (projects TIN2007-60625).

REFERENCES

[1] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach. Morgan & Kaufmann, 2002.

[2] E. Marcus and H. Stern, Blueprints for High Availability. Wiley, 2003.
[3] J. Kephart and D.M. Chess, “The Vision of Autonomic Comput-

ing,” Computer, vol. 36, no. 1, pp. 41-50, Jan. 2003.
[4] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software

Rejuvenation: Analysis, Module and Applications,” Proc. 25th Int’l
Symp. Fault-Tolerant Computing, June 1995.

[5] A. Avritzer and E. Weyuker, “Monitoring Smoothly Degrading
Systems for Increased Dependability,” Empirical Software Eng. J.,
vol 2, no. 1, pp. 59-77, 1997.

[6] Apache, http://httpd.apache.org/docs/, 2009.
[7] Microsoft IIS, http://www.microsoft.com/, 2009.
[8] V. Castelli, R. Harper, P. Heidelberg, S. Hunter, K. Trivedi, K.

Vaidyanathan, and W. Zeggert, “Proactive Management of Soft-
ware Aging,” IBM J. Research and Development, vol. 45, no. 2, Mar.
2001.

[9] K. Cassidy, K. Gross, and A. Malekpour, “Advanced Pattern
Recognition for Detection of Complex Software Aging Phenomena
in Online Transaction Processing Servers,” Proc. 2002 Int’l Conf.
Dependable Systems and Networks, 2002.

[10] A. Tai, S. Chau, L. Alkalaj, and H. Hecht, “On-Board Preventive
Maintenance: Analysis of Effectiveness and Optimal Duty
Period,” Proc. Third Workshop Object-Oriented Real-Time Dependable
Systems, 1997.

[11] E. Marshall, “Fatal Error: How Patriot Overlooked a Scud,”
Science, vol. 255, pp. 1344-1347, Mar. 1992.

[12] MemProfiler, http://memprofiler.com/, 2009.
[13] Parasoft Insure++, http://www.parasoft.com, 2009.
[14] K. Vaidyanathan and K. Trivedi, “A Comprehensive Model for

Software Rejuvenation,” IEEE Trans. Dependable and Secure
Computing, vol. 2, no. 2, pp. 124-137, Apr.-June 2005.

[15] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi, “A
Methodology for Detection and Estimation of Software Aging,”
Proc. Ninth Int’l Symp. Software Reliability Eng., pp. 282-292, 1998.

[16] K. Vaidyanathan and K.S. Trivedi, “A Measurement-Based
Model for Estimation of Resource Exhaustion in Operational
Software Systems,” Proc. 10th IEEE Int’l Symp. Software Reliability
Eng., pp. 84-93, 1999.

[17] L. Li, K. Vaidyanathan, and K. Trivedi, “An Approach for
Estimation of Software Aging in a Web-Server,” Proc. 2002 Int’l
Symp. Empirical Software Eng. (ISESE ’02), 2002.

[18] K. Gross, V. Bhardwaj, and R. Bickford, “Proactive Detection of
Software Aging Mechanisms in Performance Critical Computers,”
Proc. 27th Ann. IEEE/NASA Software Eng. Symp., 2002.

[19] K. Kaidyanathan and K. Gross, “Proactive Detection of Software
Anomalies through MSET,” Proc. Workshop Predictive Software
Models (PSM ’04), Sept. 2004.

[20] K. Gross and W. Lu, “Early Detection of Signal and Process
Anomalies in Enterprise Computing Systems,” Proc. 2002 IEEE
Int’l Conf. Machine Learning and Applications (ICMLA ’02), June
2002.

[21] L. Silva, H. Madeira, and J.G. Silva, “Software Aging and
Rejuvenation in a SOAP-Based Server,” Proc. IEEE Int’l Symp.
Network Computing and Applications (NCA), July 2006.

[22] L. Bernstein, Y.D. Yao, and K. Yao, “Software Avoiding Failures
Even When There Are Faults,” DoD Software Tech News, vol. 6,
no. 2, pp. 8-11, Oct. 2003.

[23] A. Andrzejak and L.M. Silva, “Deterministic Models of Software
Aging and Optimal Rejuvenation Schedules,” Proc. 10th IFIP/IEEE
Int’l Symp. Integrated Network Management (IM ’07), May 2007.

[24] G. Candea, A. Brown, A. Fox, and D. Patterson, “Recovery
Oriented Computing: Building Multi-Tier Dependability,” Com-
puter, vol. 37, no. 11, pp. 60-67, Nov. 2004.

[25] G. Candea, E. Kiciman, S. Zhang, and A. Fox, “JAGR: An
Autonomous Self-Recovering Application Server,” Proc. Fifth Int’l
Workshop Active Middleware Services, June 2003.

[26] A. Fox and D. Patterson, “When Does Fast Recovery Trump High
Reliability?” Proc. Second Workshop Evaluating and Architecting
System Dependability, 2002.

[27] R. Figueiredo, P. Dinda, and J. Fortes, “Resource Virtualization
Renaissance,” Computer, vol. 38, no. 5, pp. 28-69, May 2005.

[28] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors:
Current Technology and Future Trends,” IEEE Internet Computing,
vol. 38, no. 5, pp. 39-47, May/June 2005.

[29] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot—A Technique for Cheap Recovery,” Proc. Sixth
Symp. Operating Systems Design and Implementation (OSDI ’04), Dec.
2004.

[30] VMware, http://www.vmware.com, 2009.
[31] Xen, http://www.xensource.com, 2009.
[32] Virtuoso, http://www.virtuoso.com, 2009.
[33] LVS, http://www.linuxvirtualserver.org/, 2009.
[34] ldirectord, http://www.vergenet.net/linux/ldirectord, 2009.
[35] Ganglia, http://ganglia.sourceforge.net, 2009.
[36] Essential about Java Servlet Filters, http://java.sun.com/

products/servlet/Filters.html, 2009.
[37] D. Menascé, “QoS Issues in Web Services,” IEEE Internet

Computing, vol. 6, no. 6, pp. 72-74, Nov./Dec. 2002.
[38] R. Arpaci-Dusseau and A. Arpaci-Dusseau, “Fail-Stutter Fault

Tolerance,” Proc. Eighth Workshop Hot Topics in Operating Systems,
(HOTOS-VIII), 2001.

[39] S. Makridakis, S. Wheelwright, and R. Hyndman, Forecasting:
Methods and Applications, third ed. John Wiley & Sons, 1998.

[40] G. Candea and A. Fox, “Crash-Only Software,” Proc. Ninth
Workshop Hot Topics in Operating Systems, 2001.

[41] Apache Axis, http://ws.apache.org/axis, 2009.
[42] TPC-W Specification, http://www.tpc.org/tpcw/specs.asp, 2009.
[43] TPC-W in Java for Tomcat and MySQL, http://www.cs.cmu/

edu/~manjhi/tpcw.html, 2009.
[44] S. Tixeuil, W. Hoarau, and L.M. Silva, “An Overview of Existing

Tools for Fault-Injection and Dependability Benchmarking in
Grids,” Technical Report TR-0041, CoreGRID, http://www.
coregrid.net, 2009.

[45] TCP-IP RFC 793, http://www.ietf.org/rfc/rfc793.txt, 2009.

SILVA ET AL.: USING VIRTUALIZATION TO IMPROVE SOFTWARE REJUVENATION 1537

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 



Luis Moura Silva received the degree in
computer engineering from the University of
Coimbra in 1990, the master’s degree in com-
puter science from the University of Lisbon in
1993, and the PhD degree in computer science
from the University of Coimbra in 1997. He is an
associate professor in the Department of Com-
puter Science at the University of Coimbra,
Portugal. He has published more than 110 scien-
tific papers in the literature. His current research

interests include dependable computing, autonomic computing, mobile
systems, and large-scale computing.

Javier Alonso received the degree in computer
science from the Universitat Politècnica de
Catalunya (UPC) in 2004. He is currently work-
ing toward the PhD degree on the topic of self-
healing techniques for Web-based applications.
He has a temporary position in the Computer
Architecture Department as assistant professor
since 2006.

Jordi Torres received the master’s degree in
computer science in 1988 and the PhD degree in
1993 from the Technical University of Catalonia
(Universitat Politècnica de Catalunya, UPC).
Currently, he is a full professor in the Computer
Architecture Department at UPC and is a
manager for the Autonomic Systems and eBusi-
ness Platforms research line at the Barcelona
Supercomputing Center. Further, he is actively
working to combine the research from different

areas such as autonomic computing, parallel and distributed systems,
performance modeling, virtualization, and machine learning, among
others, to reasonably stem the difficulties in obtaining more sustainable
IT. He has more than 90 publications to his credit in the field. He
received the Best UPC Computer Science Thesis Award in 1993.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1538 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

Authorized licensed use limited to: Biblioteka Glowna i OINT. Downloaded on April 11,2010 at 21:09:56 UTC from IEEE Xplore.  Restrictions apply. 


