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The Multirate Filter Design method is used for FIR filters that have very narrow 
transition bands, or narrow passbands or wide passbands. These FIR filters are in gen-
eral not practical to design or implement as ordinary time invariant FIR filters due to 
the extremely long filter lengths. The following filter types can be designed using the 
Multirate Filter Design Technique:

• narrow lowpass filters
• narrow bandpass filters 
• narrow highpass filters 
• wide highpass filters 
• wide lowpass pass filters 
• narrow bandstop filters 

Multirate Signal Processing for Filter Design: Multirate Signal Processing 
consists of using different sample rates within a system to achieve computational effi-
ciencies that are impossible to obtain with a system that operates on a single fixed 
sample rate.

As an example, consider the following lowpass filter:

The filter implemented as a standard Parks-McClellan algorithm design 
requires 681 taps or 681 multiplies and add combinations. However, if the sampling 
rate was changed to 2500 Hz, the filter would require only 35 multiply and add combi-
nations. This leads to the concept of changing the sampling rates downward (decima-
tion) to a lower sampling rate; filtering the signal and then changing the sampling rate 
upward (interpolation) to the original sampling rate.   

Reducing the sampling rate requires an anti-aliasing filter prior to the decima-
tion to a lower sampling rate. Increasing the sampling rate requires an anti-imaging fil-
ter after the interpolation. The two filters are specified using the original lowpass filter 
specification. To achieve any gain in computational efficiency, the two filters must run 
at the reduced sampling rates. This paper will show how this efficiency gain can be 
achieved.

Sampling frequency 50 kHz

Passband cutoff frequency 800 Hz

Stopband cutoff frequency 1 kHz

Maximum passband attenuation 0.1 dB

Minimum stopband attenuation 60.0dB
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Returning to our example, a computational gain in efficiency of 25 to 1 can be 
achieved. As the passband edge approaches zero for a fixed sampling frequency, the 
computational efficiency approaches infinity.

DECIMATION

A reduction in the sampling rate by factor M is achieved by discarding every 
M-1 samples or equivalently keeping every Mth sample. While discarding M-1 of 
every M input samples reduces the original sample rate by a factor of M, it also causes 
input frequencies above one-half the decimated sample rate to be aliased into the fre-
quency band from DC to the decimated Nyquist frequency. To mitigate this effect, the 
input signal must be lowpass filtered to remove frequency components from portions 
of the output spectrum which are required to be alias free in subsequent signal process-
ing steps. A benefit of the decimation process is that the lowpass filter may be 
designed to operate at the decimated sample rate, rather than the faster input sample 
rate by using an FIR filter structure, and by noting that the output samples associated 
with the M-1 discarded sample need not be computed.

Let x(m) be the input signal, h(k), 0 <= k <= K be the coefficients of a given 
lowpass filter and z(m) be the output signal before decimating by factor M, then:

 (EQ 1)

Now, let the output signal after the decimator be y(r) = z(rM) where the sam-
pling rate is reduced by a factor M. Then, y(r) = z(rM) if the output signal is decimated 
by factor M. 

 (EQ 2)

Looking carefully at this equation one can see that the filter is in effect using the 
downsampled signal. Thus the operations of downsampling and the lowpass filter have 
been embedded in such a way that the lowpass filter is operating at the reduced data 
rate and the average number of computations to generate one output sample is reduced 
by factor M. 

Each output sample requires K multiply/accumulate cycles but only 1 out of M 
samples needs to be calculated.  If the downsampling of a signal is applied after the 
anti-aliasing lowpass filter, the number of multiply/accumulates is K*M for every 
Minput samples. By embedding the downsampling into the lowpass filter, the number 
of multiply/accumulate cycles is reduced to just K for every M input samples. The 
average number of multiply/accumulates per input sample is K/M.
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INTERPOLATION

An increase in sample rate (interpolation) by a factor of L is achieved by insert-
ing L-1 uniformly spaced, zero value samples between each input sample. While add-
ing L-1 new samples between each input sample increases the sample rate by a factor 
of L, it also introduces images of the input spectrum  into the interpolated output spec-
trum at frequencies between the original Nyquist frequency and the higher interpo-
lated Nyquist frequency. To mitigate this effect, the interpolated signal must be 
lowpass filtered to remove any image frequencies which will disturb subsequent signal 
processing steps. A benefit of the interpolation process is that the lowpass filter may 
be designed to operate at the input sample rate, rather than the faster output sample 
rate by using an FIR filter structure and by noting that the input associated with the L-
1 inserted values have zero value.

Let x(n) be the original input sequence, v(n) the sequence with L-1 zeros 
inserted, y(n) the output sequence of the lowpass filter and let h(0), ..., h(k-1) be the 
coefficients of the lowpass filter, then:

(EQ 3)

However, v(n-k) = 0 unless n-k is a multiple of L, the interpolation factor. This 
is because L-1 zeros were inserted in the sequence x(n) to get v(n).

Again let x(n) be the input signals, and h(k) be the filter coefficients. Then the 
output signal y(r) has a simple formula:

 (EQ 4)

For a single input sample, L output samples are created. If the anti-imaging fil-
ter is not embedded in the interpolation process, then the number of multiply/accumu-
late cycles for L output samples is L*K. However, taking advantage of the fact that L-
1 zeros were inserted into the output stream, the anti-imaging filter has only K/L non-
zero values. Hence, the number of multiply/accumulate cycles where the interpolation 
process is embedded into the anti-imaging filter is just K for L output samples. The 
average of multiply/accumulate cycles per output is K/L.

POLYPHASE FILTERS

Interpolator and decimator polyphase filters are used to implement multirate fil-
ters. The general polyphase filter approach using a combination of both upsampling 
and downsampling in the same filter is not used in multirate filter design.

Interpolator Only Polyphase Filters
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The computational efficiency of the Interpolator filter structure can also be 
achieved by reducing the large FIR filter length of length K into a set of smaller filters. 
These smaller filters will have a length N = K/L, where K is selected to be a multiple 
of L. Because the interpolation process inserts L - 1 zeros between successive values 
of x(n), only N out of the K input values stored in the FIR filter at any one time are 
nonzero. At one time instant, these nonzero values coincide and are multiplied by the 
filter coefficients h(0), h(L), h(2L), ... , h(K - L). In the following instant, the nonzero 
values of the input sequence coincide and are multiplied by the filter coefficients 
h(1), h(L + 1), h(2L + 1), ..., h(K - L + 1), and so on. This observation leads us to 
define a set of smaller filters called polyphase filters, with unit sample responses:

 k = 0,1,...,L - 1
                                                      n = 0,1,...,N - 1 (EQ 5)

where N  = K/L is an integer.

The polyphase filter can also be viewed as a set of L subfilters connected to a 
common delay line. Ideally, the k’th subfilter will generate a forward time shift of (k/
L)Fin, for  k = 0, 1, 2, ... , L - 1, relative to the zeroth subfilter. Therefore, if the zeroth 
filter generates zero delay, the frequency response of the k’th subfilter is:

(EQ 6)

Decimator Only Polyphase Filters

By transposing the interpolator structure we obtain a commutator structure for a 
decimator that is based on the parallel bank of polyphase filters. The unit sample 
responses of the polyphase filter are now defined as:

 k = 0,1,...,M - 1

                                                   n = 0,1,...,N - 1 (EQ 7)

where N = K/M is an integer when K is selected to be a multiple of M. The 
commutator rotates in a counter-clockwise direction starting with filter p0(n).

MULTIRATE FILTER DESIGNS

Multirate Filter Designs use the basic properties of decimation and interpolation 
in the implementation of the filter.

Use of Decimation and Interpolation:  All multirate filter designs use the 
basic method of decimation to implement the desired filter and then use interpolation 
to restore the sampling rate back to the original rate. Using a decimator followed by an 
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interpolator - both of which are implemented using filters running at the low data rate, 
can lead to significant reductions in the computational requirements of a filter com-
pared to the direct method of convolving the filter coefficients with the incoming sig-
nal.

Modulation:  Filter designs other than lowpass filters use the concept of modu-
lation in their implementation. For example, a bandpass filter is implemented by mod-
ulating the signal to baseband, lowpass filtering the baseband signal and then 
modulating the baseband signal back to the center frequency of the bandpass filter

NARROW LOWPASS FILTER

A narrow lowpass filter is defined as a lowpass filter with a narrow passband. 
To design a multirate narrow lowpass FIR filter, the time invariant classic FIR filter is 
replaced with a lowpass antialiasing filter and decimator followed by an interpolator 
and lowpass anti-imaging filter. The decimator and interpolator make the equivalent 
multirate system a time varying linear phase filter. 

This process can be represented in block diagram form where (model 1) 

is replaced by (model 2) 

In this system, the decimation factor is always is equal to the interpolation fac-
tor. Therefore, for the input and output of the model concerned, the sampling rate is 
NOT changed, but it is changed within the model. A so-designed lowpass filter is lin-
ear phase, but periodically time-varying. 

The lowpass filter consists of two polyphase filters - one for the decimator and 
one for the interpolator. Each polyphase filter runs at the reduced sample rate of Fs / M 
where M is the decimation (interpolation) factor and Fs is the sampling rate of the orig-
inal filter. The efficiency gain of this model is M/2. If M = 1 or 2, there is no efficiency 
gain and a regular FIR filter should be used. If M is a product of several factors, a 
multi-stage design and further reduction on computations are possible. 

h(n)
x(n) y(n)

h1(n) M x(n) M y(n)h2(n)
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Filter response is calculated as follows: Let N be the number of stages, and 
Hi(ω) (i = 0, ..., N-1) the filter response for each stage, and Di the stage factor. Let 
Xi(ω) be the input signal of decimation stage i (i = 0 to N-1), and Xi+1(ω) the output of 
decimation stage i and then the input for decimation stage i+1. This leads to the fol-
lowing formula: 

 (EQ 8)

Let Yi+1(ω) be the input of interpolation stage i, and Yi(ω) the output of stage i, 
then we have the formula for the output: 

 (EQ 9)

Since XN(ω) = YN(ω), i.e. the output of the final decimation is the input to the 
first interpolation (note that indexing for interpolation stage is reversed in order). Let 
Pi be the product of D0 to Di-1, we have 

 (EQ 10)

If the factor of the last decimation stage = 2, we can combine the last decima-
tion and first interpolation stage. Let M = N - 1, then we have: 

 (EQ 11)

In either case, we have a relation Y0(ω) = H(ω) X0(ω). The composite filter 
response H(ω) is time-varying, for a given X0(ω), we can calculate H(ω) as the plot. In 
particular, pick the input as the impulse response 

 (EQ 12)

where d is the impulse delay. The value d can be set in the plot control dialog 
box. 

Note that two lowpass filters are required and since each lowpass filter is a mul-
tirate lowpass filter, the original lowpass filter must have a narrow passband to achieve 
any computational gain. Let B be the width of the passband and Fs the sampling fre-
quency. To achieve gain in computational efficiency, the following must hold:

B < 
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Narrow Lowpass Filter Implementation

Let S be the number of stages, and Di be the decimator for stage i (i = 1, 2, ..., 
8). 

Case S = 1.

If D1 = 2, then the filter should be implemented in the regular way. Let x(n) be 
the input sample, h(m) (m = 0, 1, ... L1-1) be the FIR filter with length L1, then output 
is

 (EQ 13)

For every input, we get an output. 

If D1 > 2, then the following implementation achieves the best computational 
gain. First, calculate the output x1(n) for stage 1:

(EQ 14)

x1(n) is calculated using L1 input samples and D1 values of x1(n) are computed 
before proceeding to the interpolation part. 

The interpolation part is calculated as follows: for k = nD1 + p, (0 <= p < D1), 
and M1 = L1 / D1 (assume that L1 is a multiple of D1), 

(EQ 15)

For each input sample x1(n), there are D1 outputs (p = 0, 1, ..., D1-1). For each p 
= 0, 1, ... D1-1, we call the coefficients: h(i, p) = h(iD1 + p) (i = 0, 1, ..., M1-1) a poly-
phase filter, and there are D1 polyphase filters. The D1 outputs are the results of D1 
poly-phase filters with the same input sample x1(n). So for each input sample x1(n), D1 
outputs are obtained. 

Thus, for every D1 input samples of x(k), there is one output x1(n) for stage 1, 
and D1 outputs for the interpolation stage. 

There are two models for single-stage implementation, and the situation is same 
for multi-stage implementation. If the decimator of the last stage is 2, the last stage 
should be implemented as a regular filter. 
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To implement a multi-stage filter, all of the decimator stages are processed in 
order and then the interpolator stages are processed in order. It also should be noted 
that the number samples processed on single call must be a multiple of product of the 
decimators. 

Narrow Bandpass Filter

A narrow bandpass filter is defined as a bandpass filter with a narrow passband. 
The narrow bandpass filter is implemented using modulation techniques. Thus the fol-
lowing bandpass filter: 

is replaced by the following equivalent functional blocks: 

The desired passband of the bandpass filter is modulated so that the center of 
the passband denoted by ω0 is translated to the origin. This, of course, requires both a 
real and imaginary part. Thus, there are two lowpass filters - one for the real part of the 
modulated signal and one for the imaginary part of the modulated signal. Each of the 
lowpass filters can be implemented as a multirate lowpass filter. After processing the 

hBP(n)x(n) y(n)

hLP(n)

hLP(n) XX
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two signals through the multirate lowpass filters, the filtered signals are demodulated 
and combined to form the resulting output signal. The demodulation of the signals and 
combination of the results translates the frequency spectrum back to the original posi-
tion. 

Thus a bandpass filter has been implemented by two multirate lowpass filters. 
This technique of modulating a signal to baseband, lowpass filtering and demodula-
tion of the filtered signal is one of two fundamental techniques for constructing 
multirate filters. 

This design in general does not give a constant group delay, but it is possible to 
adjust the filter lengths for multi-stage lowpass filters such that the bandpass filter 
implemented as a result of cosine modulation has a constant group delay. 

The formula for the composite filter of narrow bandpass filter is as follows: 

 (EQ 16)

where H(ω) is calculated as narrow lowpass filter. 

Note that two lowpass filters are required and since each lowpass filter is a mul-
tirate lowpass filter, the bandpass filter must have a narrow bandwidth to achieve any 
computational gain. Let B be the width of the passband and Fs the sampling frequency. 
To achieve gain in computational efficiency, the following must hold:

B < 

Since the modulation and demodulation consists of multiplying the signals by 
 or , the choice of ω0 can  significantly affect the efficiency of the 

filter design. 

In general, one should choose ω0 to avoid the actual calculation of a sine or 
cosine but instead rely on some type of direct table lookup of the sine and cosine val-
ues based on the current value of n.

Narrow Highpass Filters

The modulation technique described for the narrow bandpass filter can also be 
applied to a narrow highpass design. In this case,

(EQ 17)

 and 

(EQ 18)

Hence the modulation multipliers become 
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 (EQ 19)

 (EQ 20)

Note that sin (nπ) = 0 for all n since n is an integer. Thus the imaginary branch 
in the bandpass design is eliminated. Note: cos (nπ) = (-1)n which is just alternating 
+1,-1. So for the narrow highpass filter, the modulation and demodulation is reduced 
to multiplying by 1 and -1 alternatively on the real branch of a bandpass design. 

This means that a time invariant highpass filter is replaced by the following 
equivalent functional block: 

The formula for narrow highpass filter is:

 (EQ 21)

where H(ω) is the response of narrow lowpass filter. 

Again, the lowpass filter is a multirate filter.  For any gain in computational 
efficiency the passband width B of the wide lowpass filter must satisfy the following 
requirement:

Narrow Highpass Filter Implementation

The filter is implemented in a similar way to the case of narrow lowpass. Every 
other input sample sign is changed before the input to first stage, and every other out-
put sample sign must be changed. 

In term of transfer function, if H(ω) is the transfer function for lowpass filter, 
then the transfer function for highpass filter is H(π−ω). Instead of changing the sign of 
input and output samples, it is possible to change the sign of filter coefficients, and 
implement the filter (after the coefficients are modified) exactly the same as lowpass 
filter. The modification of coefficients of filter can be made as follows:

ω0sin nT nπsin=

ω0nTcos nπcos=

X XLowpass Filterx(n) y(n)

(-1)n (-1)n

Y0 ω( ) H π ω–( )X0 ω( )=
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where h(i) is the original coefficient, and w(i) is the modified coefficient, and 
the value c is 1.0 or -1.0. c = -1.0 only in following case: j = u * i is odd, where u is 
determined as follows: for stage 1, u = 1; for stage 2, u = D1 (the first decimator), for 
stage n, the value u is the product of all decimators prior to the current stage. If u is 
even, then j is always even, and c is always 1.0, then the filter coefficients are not 
changed. Every other coefficient of the filter for stage 1 always has the sign change. 

Wide Highpass Filters

Wide highpass filters can be implemented using difference techniques. Let 
HNLP(z) be the transfer function of a narrow lowpass filter. Then the transfer function 
of a wideband highpass filter is HWHP(z) = 1-HNLP(z). 

To implement a wide highpass filter, the output of a narrow lowpass filter is 
subtracted from the delayed original signal.

Therefore, the wide highpass filter is implemented as follows:

The delay z-N is very important. N is selected to be exactly one half of the filter 
length of the composite lowpass filter. If the delay is not implemented to be exactly 
half the filter length, the frequency response will be affected and the desired highpass 
filter will not be achieved. The formula for the delay in multi-stage design is given in 
the section on Multi-Stage Filter Design. 

This concept of forming differences of transfer functions to obtain desired 
transfer functions is the second fundamental technique for constructing multirate 
filters. 

The response of wide highpass filter is calculated as follows: 

 (EQ 22)
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where H(ω) is the response of narrow lowpass filter, N is the group delay of 
narrow lowpass filter H(ω). It is possible to have a half-sample delay for filter H(ω), 
and in this case we can not have a pure delay term. Filter lengths should be adjusted to 
avoid the half-sample delay. 

Again, the lowpass filter is a multirate filter.  For any gain in computational 
efficiency the passband width B of the wide lowpass filter must satisfy the following 
requirement:

Wide Highpass Filter Implementation

The wide highpass filter is implemented by subtracting the result of a narrow 
lowpass filter from a delayed input. Since the narrow lowpass filter has a delay, the 
input samples must be saved in a delay buffer, the size of buffer is least equal to the 
delay of narrow lowpass filter. The integer delay is necessary for this structure. The 
narrow lowpass filter is designed and implemented as a multi-rate filter. 

Wide Lowpass Filters

Let HNHP(z) be the transfer function of a narrow highpass filter. Then the trans-
fer function of a wide lowpass filter is HWLP(z) = 1 - HNHP(z). Thus to implement a 
wideband lowpass filter, the output of a narrow highpass filter is subtracted from the 
delayed original signal. This is shown in the following diagram:

N is the delay of NHP. If the narrow highpass filter is implemented as the cosine 
modulation of narrow lowpass filter, then the N is the delay of the NLP. 

The response for wide lowpass filter is calculated as follows: 

 (EQ 23)
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where H(ω) is the narrow lowpass filter response, and N is the group delay of 
narrow lowpass filter H(ω). It is possible to have a half-sample delay for filter H(ω), 
and in this case we can not have a pure delay term. The system will adjust the filter 
length to avoid the half-sample delay problem. 

Note that the lowpass filter is a multirate lowpass filter.  For any gain in compu-
tational efficiency the passband width B of the wide lowpass filter must satisfy the fol-
lowing requirement:

Wide Lowpass Filter Implementation

The filter is implemented by subtracting the result of a narrow highpass filter 
from a delayed input. A delay buffer equal to the delay of the narrow highpass filter is 
required to store the delayed input samples.

Narrow Bandstop Filters 

Let HNBP(z) be the transfer function of a narrow bandpass filter and HNBS (z) 
the transfer function of the narrow bandstop filter. If HNBP (z) has a constant group 
delay N, then the transfer function of a narrow bandstop filter is HNBS(z) = 1 - 
HNBP(z). This filter is called a narrow bandstop due to the narrow stopband region. 
Note, this terminology is different from the other filters where the adjective narrow or 
wide refers to the passband region.

To implement a narrow bandstop filter, the output of a narrow bandpass filter is 
subtracted from the original delayed signal. This is shown in the following diagram: 

In order for this model to work, the narrow bandpass filter must have a constant 
group delay. In general, a bandpass filter implemented using cosine modulation of a 
lowpass filter does not have a constant group delay. It is possible to adjust the filter 
lengths for multistage lowpass filters such that the bandpass filter has a constant group 
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delay. This is the group delay of the lowpass filter. Filter lengths should be adjusted so 
that the group delay is constant.

The response of the narrow bandstop filter is calculated as follows: 

 (EQ 24)

where H(ω) is the response of narrow lowpass filter, and N is the group delay. 
Again the half-sample delay is not allowed in the system. 

Multi-Stage Filter Design 

We will consider the narrow lowpass filter only. Other filter types are converted 
into a narrow lowpass filter and implemented in a structure previously described. Let 

 (EQ 25)

M is the maximum decimator for the narrow lowpass filter. Any integer > M 
used as a decimator will cause signal aliasing in passband region. 

If we choose a factor D <= M with three factors: D1, D2, and D3 such that 

D = D1 * D2 * D3 (EQ 26)

We can have a 3-stage filter design, with one filter for each stage. The specifica-
tions for each stage filter depend on the original narrow lowpass filter and the stage 
factors D1, D2 and D3. Let L1, L2, and L3 be the filter lengths for each stage respec-
tively, then the total computations per D samples can be formulated as follows 

2* (L3 + L2 * D3 + L1 * D3 * D2) (EQ 27)

and the group delay is 

N = (L1 - 1) + D1 * (L2 - 1) + D1 * D2 * (L3 - 1) (EQ 28)

However, if the last stage factor is D3 = 2, and since there is no gain in compu-
tational efficiency for the model 2, then model 1 is used for this stage. In this case, the 
group delay is 

N = (L1 - 1) + D1 * (L2 - 1) + D1 * D2 * (L3 - 1) / 2 (EQ 29)

For most optimal designs, the last stage factor is 2. If L3 is an odd number, N is 
always an integer. If there is a half sample delay (N is not an integer), problems will 
occur for wide lowpass and highpass filters where an integer group delay is required. 
This system will adjust the filter length in order to avoid the half-sample delay in these 
two filters. 

The choice of decimator D and number of stages and factors for each stage is 
not a single-objective optimization problem. This system will give a set of ‘best deci-
mators’ for the user to select. 

Y0 ω( ) e jNω– H ω ω0+( )– H ω ω0–( )–( )X0 ω( )=

M sample rate 0.5×
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In conclusion, it is possible to design very efficient FIR filters using multirate 
design methods.  The only real disadvantage is the complexity of the implementation 
and design unless an automated design program is available for use.  These filters 
inherently have long delays and are not suitable for applications where such long 
delays are inappropriate.  However, the computational gain using this approach can be 
significant compared to standard FIR filter design methods.


