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Abstract

The Nelder-Mead algorithm for unconstrained
optimization has been used extensively to solve
parameter estimation (and other) problems for
almost 40 years. Despite its age it is still the
method of choice for many practitioners in the
fields of statistics, engineering and the physi-
cal and medical sciences because it is easy to
code and very easy to use. It belongs to a
class of methods which do not require deriva-
tives and which are often claimed to be ro-
bust for problems with discontinuities or where
function values are noisy. However, relatively
recently (McKinnon, 1998) showed that the
method can fail to converge or converge to
non-solutions on certain classes of problems.
Only very limited convergence results exist for
a restricted class of problems in 1 or 2 dimen-
sions (Lagarius et al, 1998). So why is the
method still used? How can it be improved?
Recent developments, are presented to help
answer these questions.



Citation Classic

“The Nelder-Mead Simplex algorithm has en-
joyed enduring popularity. Of all the direct
search methods, the Nelder-Mead simplex al-
gorithm is the one most found in numerical
software packages. The original paper by Nelder
and Mead is a Science Citatation Index classic
with several thousand references across the sci-
entific literature in journals ranging from Acta
Anaestesiologica Scandinavica to Zhurnal Fizich-
eskio Khimii. In fact, there is an entire book
from the chemical engineering community de-
voted to simplex search for optimization”

Lewis, Torczon, Trosset (2000)




Some Historical References

Nelder, Mead (1965): Original Paper

Parkinson, Hutchinson (1971):
NAG Library implementation

McKinnon(1998): Counter Examples

Lagarius, Reeds, Wright, Wright(1998):
MATLAB implementation (Fminsearch)

Rykov(1983), Kelley(2000): Modifications
(convergence not guaranteed)

Tseng(2001), BCP(2002):
Convergent Variants



How does Nelder-Mead work?

A simplex based direct search method

Direct search: Methods that use comparisons of
the values of the objective function and do
not require the use of any derivatives are

called direct search methods.

Simplex: A simplex in R" is a set of n + 1 points

that do not lie in a hyperplane.

Four basic operations:

> Reflect
> Expand
» Contract
»  Shrink



A simplex (2-d)



Vo

The search direction for the Nelder-Mead algorithm



Expand step



Contract outside step



Contract inside step



Vo

All of the trial points for the Nelder-Mead algorithm



Shrink step



What can go wrong?

» Collapse of the simplex

e McKinnon’s functions (2-d)

00l x| +x, +x2 x<0
f(xpxz): ¢‘ 1’ ? ?

Ox," +x, + x3 x20

eg 0=6, ¢=60, 7=2

> Failure to make sufficient descent

e Standard quadratics

» No convergence proof
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Contours for M Kinnon’s function
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Contours for M°Kinnon’s function and the initial simplex
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Contours for M°Kinnon’s function showing the collapse

of successive simplices
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The minima found by FMINSEARCH for the standard quadratic for

dimensions from two through to 100
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Positive bases

Positive basis: A positive basis P, i1s a set of

vectors such that the following conditions hold:

> Every vector in R” can be written as a non-
negative combination of the vectors in the

positive basis.

» No elements of P, is expressible as a non-
negative combination of the remaining

elements of P,

1 n
P, = {pl,pz, s P —;Zp,} where p;, p,; ... p,
i=1

form a basis for R”















Frames

Frame: A frame F in R" is a set of n + 2 points
specified by a central frame point ¢, a positive

basis P, and a frame size #, such that:

F(c, P,, h)={c} U {c+hp,: p,e P}



Creating the frame about the best vertex of the current simplex.
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Figure 1: Trial points for the Nelder-Mead algorithm (left image) and the pseudo
expand point from the ghost simplex for the modified Nelder-Mead algorithm
(right image).



Sufficient descent

Sufficient descent: The algorithm is said to be
making sufficient descent if the function value
at the worst vertex of the simplex is reduced by
a sufficient amount at each iteration. This can
be determined by the use of a sufficient descent
parameter ¢, calculated using the equation:

€= Nh'
where N is a positive constant and v > 1 so that

ash — 0, so does ¢



Schematic diagram for the variant
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An orthogonal frame about the origin and M°Kinnon’s function.



T2

A close-up of the frame about the origin and M°Kinnon’s function.



Improvements

» Alternate the direction of the positive basis

vectors every time a frame is reduced in size.

» If completing a frame, make it a good one.
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If a simplex is near collapse then even alternating the direction of the
positive basis vectors may not produce a descent direction without a big

reduction in the frame size.



The improved variant
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The minima found by the variant for the standard quadratic for

dimensions from two through to 100
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The minima found by FMINSEARCH for the standard quadratic for

dimensions from two through to 100
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FMINSEARCH The variant
Function FE Minimum FE Minimum
Rosenbrock 2-d 219 1.09909e — 18 285 1.39058e — 17
Freudenstein and Roth 2-d 172 4.89843¢ + 01 217 4.89843e + 01
Powell badly scaled 2-d 754 1.11069e — 25 969 4.23980e — 25
Brown badly scaled 2-d 335 7.03868¢ — 18 498 7.99797e — 17
Beale 2-d 162 6.11428e — 18 191 2.07825¢ — 18
Jennrich and Sampson 2-d 133 1.24362¢ + 02 157 1.24362¢ + 02
M¢Kinnon 2-d 290 —2.50000e — 01 426 —2.50000e — 01
Helical valley 3-d 428 4.78479% — 17 342 9.83210e — 16
Bard 3-d *100004 1.74287¢ + 01 1134 1.74287e¢ + 01
Gaussian 3-d 216  1.12793e — 08 194 1.12793e — 08
Meyer 3-d *100004 8.79459¢ + 01 2801 8.79459¢ + 01
Gulf research 3-d 687 1.13899¢ — 22 529 5.44511e — 19
Box 3-d 701 3.05741e — 22 478 8.70459¢ — 21
Powell singular 4-d 956 3.56353e — 28 | 1045 6.73509¢ — 26
Wood 4-d 572 1.56392¢ — 17 656 2.57400e — 16
Kowalik and Osbourne 4-d 398 3.07506e — 04 653 3.07506e — 04
Brown and Dennis 4-d *100001 8.58222¢ + 04 603 8.58222¢ + 04
Quadratic 4-d 326 4.52859¢ — 17 440 2.15350e — 17
Penalty (1) 4-d 1371 2.24998¢ — 05 | 1848 2.24998¢ — 05
Penalty (2) 4-d 3730 9.37629¢ — 06 | 4689 9.37629¢ — 06
Osbourne (1) 5-d 1098 5.46489¢e — 05 1488 5.46489¢ — 05
Brown almost linear 5-d 782 1.45905¢ — 18 648 1.08728e — 18
Biggs EXP6 6-d 1130 5.65565e — 03 4390 1.16131e — 20
Extended Rosenbrock 6-d 7015 2.79071e— 17 | 3110 1.35844e — 14
Brown almost-linear 7-d 1819 9.72059¢ — 18 | 1539 1.51163e — 17
Quadratic 8-d 1519 2.93256e — 16 | 1002 8.07477e — 17
Extended Rosenbrock 8-d 5958  16.66424e — 01 | 5314 3.27909¢ — 17
Variably dimensional 8-d 3780 2.08479¢ — 16 | 2563 1.24784e — 15
Extended Powell 8-d 2513 15.13165¢ — 07 | 7200 6.43822¢ — 24
Watson 9-d 32290 13.98475¢—03 | 5256 1.39976e — 06
Extended Rosenbrock 10-d 6684 19.72338¢ +00 | 7629 2.22125e — 16
Penalty (1) 10-d 5479  17.56754e—05 | 9200  7.08765¢ — 05
Penalty (2) 10-d 6783  12.97789e¢ — 04 | 32768 2.93661e — 04
Trigonometric 10-d 3105 2.79506e — 05 | 2466 2.79506e — 05
Osbourne (2) 11-d 4926  4.01377e—02 | 6416  4.01377e— 02
Extended Powell 12-d 6607  15.52519e — 06 | 20076 1.11105e¢ — 20
Quadratic 16-d 8543 7.70363e — 16 | 2352 1.41547e — 16
Quadratic 24-d *100000  15.04216e — 01 4766 1.21730e — 15

Comparison of the performance of FMINSEARCH and the variant.




Summary

» Have developed a provably convergent variant

of the Nelder-Mead algorithm

» Appears to work well in practice

> Maintains the nice features of the Nelder-Mead
algorithm and avoids some of its problems:
e M°‘Kinnon’s functions

e Standard quadratics



