
1

Technika cyfrowa 2

wykład 13

Programy narzędziowe

Katedra Metrologii Elektronicznej i Fotonicznej

Andrzej Stępień

Program - asembler

[etykieta:] [;komentarz]

etykieta - symboliczny adres

instrukcja - rozkaz wykonywany przez procesor

mnemonik - symboliczna nazwa instrukcji

operand - argumenty instrukcji

dyrektywa - polecenie dla asemblera

komentarz - tekst pomijany przez asembler, od ‘;’ do CR LF

mnemonik instrukcji [operand1], [operand2], ..

dyrektywa

instrukcja

IDE

Compiler

object file

∗.obj

Absolute / Relocatable object file

Assembler

object file

∗.obj

Assembler

object file

∗.obj

Assembler

object file

∗.obj

Compiler

object file

∗.obj

Compiler

object file

∗.obj

Linker

[Converter]

Map file

∗.map

∗. m51Library file

∗.lib

Absolute file

∗.

∗.abs

∗.hex

Symbol file

∗.sym

Keil µµµµVision3 - Debug (4)

Graphics-oriented tool

Visual FIVE Software Development Tool offers you a user-friendly

way to program ST5 ICUs, in a Windows environment. The visual and

graphical approach provides you an innovative and time-saving solution to

develop your project, reducing to the minimum your Assembler code writing

and focusing on control and system problems.

The whole project is developed as a flow chart of various blocks for

peripherals start/stop, subroutines, Decision Processor algorithms, C and

Assembler parts (www.stmcu.com)

Features provided are:

• quick fully graphical Peripherals and Ports configuration

• Visual approach

• Dedicated graphical and guided editor for Decision Processor

algorithms

• Debugger and Programmer integrated in Visual FIVE IDE

Code Architect (http://www.codearchitect.org -

Code Generation Technology by Embedded Systems Academy (1)

� Code Architect is an online and offline technology that allows quick and

simple generation of code or data in situations where manual generation

may be time consuming or complex.

� With Code Architect, the familiar user interface of web pages are used to

provide an intuitive and easy to follow method of configuring and customizing

the code or data to be generated. With one click the customized code or

data is instantly generated and may then be saved directly into a project.

Code generated may be in any language available (C, Pascal, Modula-2,

Visual C++). Data generated may be in any text-based format.

� Code Architect is a generic open-ended system making it completely

independent of:

• The Web Page graphics and appearance

• The HTML form to input configuration and customization details

• The algorithm to generate the code or data

• The actual code or data generated

2

Code Architect (http://www.codearchitect.org -

Code Generation Technology by Embedded Systems Academy (2)

� This allows Code Architect to be used for a wide range of applications.

For example:

• Configuration of Microcontroller Peripherals

• Configuration of software stacks such as TCP/IP stacks and CANopen

stacks

• Configuration of projects

• Generation of lookup tables

• Generation of raw ASCII data for further processing or use in other

applications

� The following links will take you to the current versions of Code Architect

available (the "Classic" version is the previous version of Code Architect):

• Code Architect for Philips P89LPC9xx Microcontrollers Online Version

• Code Architect for Philips P89LPC9xx Microcontrollers Windows

Version

• Classic Code Architect for Philips P87LPC7xx Microcontrollers

ST7 Training
http://mcu.st.com/mcu/modules.php?name=Training

Free Solution available on the ST web site or CD ROM. The ST Visual Debug 7 is

the ST generic user interface for all ST7 microcontrollers. It is used to build, write

and debug the application inside the same friendly environment. Applications can

be developed in both Assembly code and/or C language. The STVD7 easily

interfaces with Cosmic and Metrowerks C Compilers. For more information, please

refer to ST7 Visual Debug User Manual available on ST web site or CD-ROM.

STVD7 drives all the ST development tools plus the InDart series.

Microcontroller Programming methods

� In System Programming (ISP) occurs when an outside device causes the

processor, rather than executing its normal application code, to execute

code at a location that contains memory erase and programming

routines. This programming takes place with the microcontroller in its

normal hardware environment. i.e., soldered on a printed circuit board.

� In Application Programming (IAP) is similar to in system programming

described above, but rather than having an external device initiate the

programming process the normal application code branches to the

memory erase and program routines. Similar to In System Programming

this operation takes place with the microcontroller in its normal hardware

environment.

� Parallel Programming requires an external programming device. In

general it can only be accomplished on a part that is not in its normal

hardware environment.

ISP - P89LPC932

•P89LPC932A1. 8-bit microcontroller with accelerated two-clock 80C51 core, 8 kB 3 V

byte-erasable flash with 512-byte data EEPROM. Rev. 02 — 10 May 2005, Philips

Semiconductors

•Richard Soennichsen: AN10221. In-system programming (ISP) with the Philips

P89LPC932 microcontroller. 2003 Sep 08, Philips Semiconductors

•AN10258. How to use the LPC900 In-circuit programming (ICP). Rev. 02 - 21 October

2004, Philips Semiconductors

Entering ISP Mode - There are three ways to enter the ISP mode:

� Via the status bit and boot vector. (Default condition on initial power-up.)

� Through a break detect reset.

� By pulsing the reset pin upon power-up. (Hardware Activation)

P89LPC932 - Via the status bit and boot vector

BootLoader - BootVector

P89LPC932 - Break Detect Reset

A break condition is defined as:

� a low on RxD for the length of one frame time

� frame length depends on the particular mode of the UART (in mode

one for example a break condition is defined as ten bit times)

� when a break is issued RxD is typically held low for multiple frame

times

� the break is reported after the first frame that meets the condition of

RxD being held low.

RxD

TxD

LPC932

GND

PC RS232 Port

Break Detect

UART frame

RS-232

Level

Shifter

3

P89LPC932 - Hardware activation

� This mode of ISP entry is always available regardless of user code or

the state of the status bit. (Assuming that the boot loader code is intact

and the boot vector is 1EH)

� By presenting a timed waveform of low-going pulses to the reset pin

after power up, the part will begin code execution at the address

pointed to by the boot vector.

� This entry mode has the same effect as having a non-zero status byte.

VDD

RST

tVR tRH tRL

SYMBOL PARAMETER Min Max

tVR RST delay from

VDD active 50 – µs

tRH RST HIGH time 1 32 µs

tRL RST LOW time 1 - µs

P89LPC932 - “Dongle” Schematic

RxD

PC

RS232

Port

RS-232

Level

ShifterTxD

TUSB3410 - Texas Instruments

TUSB3410, TUSB3410I. USB to Serial Port Controller. Data Manual. September 2005,

Texas Instruments, SLLS519D

� The TUSB3410 contains onboard ROM microcode (BootLoader), which

enables the MCU to enumerate the device as a USB peripheral. The

ROM microcode can also load application code into internal RAM from

either external memory via the I2C bus or from the host via the USB.

� After reset, the TUSB3410 is disconnected from the USB.

� The TUSB3410 checks the I2C port for the existence of valid code; if it

finds valid code, then it uploads the code from the external memory

device into the RAM program space. Once loaded, the TUSB3410

connects to the USB and enumeration and configuration are performed.

This is the most likely use of the device.

� If the valid code is not found at the I2C port, then the TUSB3410
connects to the USB and then an enumeration and default configuration

are performed.

ISP - AVR Family (1/2)

Application Note AVR910. In-System Programming. Rev. 0943C–11/00, Atmel Corporation

� In-System programming allows programming and reprogramming of any

AVR microcontroller

� Using a simple 3-wire SPI interface, the I n-System programmer

communicates serially with the AVR microcontroller, reprogramming all

nonvolatile memories on the chip.

� The Serial Peripheral Interface (SPI) consists of three wires:

– Serial ClocK (SCK),

– Master In – Slave Out (MISO)

– Master Out – Slave In (MOSI).

� When programming the AVR, the In-System programmer always operate

as the master, and the target system always operate as the slave.

ISP - AVR Family (2/2)

� To allow programming of targets running at any allowed voltage (2.7V -

6.0V), the programmer can draw power from the target system (VCC).

� The target AVR microcontroller will enter Serial programming mode only

when its reset line is active (low).

� Immediately after Reset has gone active, the In-System programmer will

start to communicate on the three dedicated SPI wires SCK, MISO and

MOSI.

� The AVR microcontroller will automatically set all its I/O pins to inputs,

with pull ups disabled, when Reset is active.

ISP - AVR Low Cost In-System Programmer (1)

4

ISP - AVR Low Cost In-System Programmer (2) ISP - AVR ATmega8(L)

Depending on CKSEL Fuses, a

valid clock must be present. The

minimum low and high periods for

the Serial Clock (SCK) input are

defined as follows:

� Low:> 2 CPU clock cycles for

fck < 12 MHz, 3 CPU clock

cycles for fck ≥ 12 MHz

� High:> 2 CPU clock cycles for

fck < 12 MHz, 3 CPU clock

cycles for fck ≥ 12 MHz

ISP - AVR ATmega8(L) - Device Clocking & Serial Programming

Instruction Set

Programming Enable

Chip Erase

Read Program Memory

Load Program Memory Page

Write Program Memory Page

Read EEPROM Memory

Write EEPROM Memory

Read Lock Bits

Write Lock Bits

Read Signature Byte

Write Fuse Bits

Write Fuse High Bits

Read Fuse Bits

Read Fuse High Bits

Read Calibration Byte

Device Clocking Option

External Crystal/Ceramic Resonator

External Low-frequency Crystal

External RC Oscillator

Calibrated Internal RC Oscillator

External Clock

Note: For all fuses “1” means

unprogrammed while “0” means

programmed.

JTAG (1/2)

� Developed by Joint Test Action Group (over 200 SC, test, and system

vendors) starting in mid '80's

� Sanctioned by IEEE as Std 1149.1 Test Access Port and Boundary-Scan

Architecture in 1990

� Solution: Build test facilities/test points into chips

� Focus: Ensure compatibility between all compliant ICs

JTAG (IEEE 1149.1/P1149.4) Tutorial Introductory. 1997 TI Test Symposium, 10Sept.-97

JTAG (2/2)

� 4-Wire Interface at

Chip-Level

� Serial

Instruction/Serial

Data Port

� Extensible to

Include

– user-defined

instructions

– user-defined data

registers

JTAG - ATmega16(L) Microcontroller with 16K Bytes ISP Flash

On-chip debug system:

� All Internal Peripheral Units

� Internal and External RAM

� The Internal Register File

� Program Counter

� EEPROM and Flash Memories

� Extensive On-chip Debug Support for Break Conditions, Including

AVR Break Instruction

� Break on Change of Program Memory Flow

� Single Step Break

� Program Memory Breakpoints on Single Address Address Range

� Data Memory Breakpoints on Single Address Address Range

Programming on Flash, EEPROM, Fuses, and Lock Bits

On-chip Debugging Supported by AVR Studio

5

In-Circiut Emulator - SIGNUM SYSTEMS (2)

USP-51 Emulator:

• Non-intrusive emulation up to 60 MHz

• Replaceable processor probes (PODs) support

virtually all 8051 derivatives from Philips, Atmel,

Atmel W & uC, Infineon etc.

• Parallel and Serial Port connectivity

USP-51 Emulator:

• Trace Buffer with timestamp

• Advanced Complex Events (Events, Counters,

Sequencer, address and data match

Comparators)

• Unlimited number of breakpoints

• Banked memory support

• Dual-ported RAM to access memory while

application is running

In-Circiut Emulator - SIGNUM SYSTEMS (4)
Windows used for assembly debug:

• Source window for assembly language code

display, breakpoint setting and other

• Watch, Status and SFR windows allow examine/

/modification of CPU and CPU peripherals registers

• SFR Bit Information window shows detailed

information about SFR bits

• Symbol Explorer window allows to declare user

defined symbols and browse/search for symbols

Assembly language execute actions:

• CPU instruction single step

• CPU instruction step over

• Subroutine step out

• Go till CPU instruction at mouse cursor

• Go till breakpoint(s)

• Skip CPU instruction without execution

• Set new execution point at mouse cursor

• In-line code assembly

In-Circiut Emulator - SIGNUM SYSTEMS (5)
Breakpoints:

• Unlimited number of breakpoints set manually

from Source, Breakpoints or Command

windows

• Unlimited number of complex breakpoints

Watching Variables Values:

• Fly-by display in tool tips over Source window

• In Watch, Locals, SFR, Status and SFR Bit

Information windows

• Continuous value monitoring in Watch and Locals

windows with Auto Refresh feature

• With DISP commands in Command window

provided by Complex Events hardware

• Breakpoints on values of CPU/

peripherals registers and IRAM

locations

In-Circiut Emulator - SIGNUM SYSTEMS (6)
Trace Buffer Analysis:

• Pre-filtering with Complex Events window

• Post-filtering with Trace window option settings

• Search for C statement/CPU

instruction/memory access cycle

• Timestamp to measure time intervals

• Source window synchronization

• Save to file for further reference

Coverage Analysis:

• Shows executed/unexecuted code

• Generates comprehensive reports

• Report Append mode available

• Automatic Source window synchronization

• Save to file for further reference

• A must during QC&A when developing software

with high degree of reliability and availability

In-Circiut Emulator - SIGNUM SYSTEMS (7)

Performance Analysis:

• Allows detailed profiling of selected code ranges

• Measures code execution times and counts how

many times code ranges were executed

• Graphical presentation of collected data

• Save to file for further reference

Code Scope Analysis:

• Allows statistical application profiling

• Two-dimensional graphical presentation of collected

data

• Advanced presentation, analysis, navigation and

measure features

• Source window synchronization

• Save to file for further reference

In-Circiut Emulator - SIGNUM SYSTEMS (8)

Problem: How can I trap my program on attempts

to read un-initialized memory locations ?
Solution:

Before loading your

program fill the XDATA

memory (where the

program variables are

located) with a constant

pattern (e.g. 0x66) and

set Complex Events

breakpoint whenever

data read from XDATA is

equal to the 0x66.

Although this does not fully guarantee that the memory was not initialized, finding

the right constant value for filling XDATA may give excellent results.

Here breakpoint was triggered when stg[0].tab[s] uninitialized variable was used.

