
1

Jitti Jungwattanakit · Manop Reodecha · Paveena Chaovalitwongse · Frank Werner

Algorithms for flexible flow shop problems with unrelated parallel
machines, setup times, and dual criteria

In textile industries, production facilities are established as
multi-stage production flow shop facilities where a production
stage may be made up of parallel machines. It is known as
flexible or hybrid flow shop environment. This paper
considers the problem of scheduling n independent jobs in
such an environment. In addition, we also consider the
general case in which parallel machines in each stage may be
unrelated. Each job is processed in ordered operations on a
machine of each stage. Its release date and due date are
given. Preemption of jobs is not permitted. We consider both
sequence- and machine-dependent setup times. The problem
is to determine a schedule that minimizes a convex
combination of makespan and the number of tardy jobs. A 0-
1 mixed integer program of the problem is formulated. Since
this problem class is NP-hard in the strong sense, we develop
heuristic algorithms to solve this problem approximately.
Firstly, several basic dispatching rules and well-known
constructive heuristics for flow shop makespan scheduling
problems are generalized to the problem under consideration.
We sketch how from a job sequence a complete schedule for
the flexible flow shop problem with unrelated parallel
machines can be constructed. Then genetic algorithms are
suggested. We discuss the components of these algorithms and
test their parameters. The performance of the heuristics is
compared relative to each other on a set of test problems with
up to 50 jobs and 20 stages.

Keywords: Flexible flow shop scheduling; Mathematical
programming; Constructive algorithms; Genetic algorithms;

1 Introduction

Production scheduling can be defined as the allocation of
available production resources over time to perform a
collection of tasks [1]. It is an important decision making
process in the operation level. In a modern manufacturing
environment, many scheduling problems occur. Most of the
scheduling problems are very significant and hard to solve
owing to the complex nature of the problems. A textile

J. Jungwattanakit, M. Reodecha, and P. Chaovalitwongse
Department of Industrial Engineering, Faculty of Engineering,
Chulalongkorn University, Bangkok 10330 Thailand

F. Werner ()
Faculty of Mathematics, Otto-von-Guericke University Magdeburg,
P.O. Box 4120, 39016 Magdeburg, Germany
phone +49-391-6712025, fax: +49-391-6711171,
e-mail: frank.werner@mathematik.uni-magdeburg.de

facility environment, an example of a scheduling problem,
will be discussed in this paper.
 In textile manufacturing, products that contain fibers, such
as clothing, tires, and yarn are made. Its production unit can
hardly fit in any classical scheduling model. Instead, such a
production unit is characterized by multi-stage production
flow shop facilities, where a production stage may be made up
of parallel production lines, machines or any other production
facility. At some stages, the facilities (machines, lines, etc.)
are duplicated in parallel in order to increase the overall
capacities of the shop floor, or in order to balance the
capacities of the stages, or either to eliminate or reduce the
impact of bottleneck stages on the overall shop floor
capacities known as flexible flow shop, multiprocessor flow
shop, or hybrid flow shop environment.
 In addition, setup times and costs incur when machines
often have to be reconfigured or cleaned between jobs. This
process is known as a changeover or setup. If the length of
the setup depends on the job just completed and on the one
about to be started, then the setup times are sequence-
dependent which often occurs in such an industry. For
instance, in the weaving operation, the setup times depend on
the types of clothes being processed in sequence. Another
example arises in the dying operation. Every time a new
color is used, the coloring devices must be cleaned. The
cleanup time often depends on the color just used as well as
the color about to be used.
 A flexible flow shop environment is a generalization of the
classical flow shop model. There are k stages and some stages
may have only one machine, but at least one stage must have
multiple machines. The jobs have to visit the stages in the
same order string from stage one through stage k. A machine
can process at most one job at a time and a job can be
processed by at most one machine at a time. Preemption of
such a processing is not allowed. The problem consists of
assigning jobs to machines at each stage and sequencing the
jobs assigned to the same machine so that some optimality
criteria are minimized.
 Although the flexible flow shop problem has been widely
studied in the literature, most of the studies related to flexible
flow shop problems are concentrated on problems with
identical processors, see for instance, Gupta, Krüger, Lauff,
Werner and Sotskov [2], Alisantoso, Khoo, and Jiang [3], Lin
and Liao [4] and Wang and Hunsucker [5]. In a real world
situation, it is common to find newer or more modern
machines running side by side with older and less efficient
machines. Even though the older machines are less efficient,
they may be kept in the production lines because of their high
replacement costs. The older machines may perform the same
operations as the newer ones, but would generally require a
longer operating time for the same operation. In this paper,

2

the flexible flow shop problem with unrelated parallel
machines is considered, that is, there are different parallel
machines at every stage, and speeds of the machines are
dependent on the jobs. Moreover, several industries encounter
setup times which result in even more difficult scheduling
problems. In this paper, both sequence- and machine-
dependent setup time restrictions are taken into account as
well.
 A detailed survey for the flexible flow shop problem is
given by Linn and Zang [6] and Wang [7]. Most of the earlier
literature has considered the simple case of only two stages.
Arthanari and Ramamurthy [8] and Salvador [9] are among
the first who define the flexible flow shop problem. They
propose a branch and bound method to tackle the problem.
Such a method is an exact solution technique which
guarantees optimal solutions. However, the exact algorithm
presented can only be applied to very small instances. Other
exact approaches for multi-stage flexible flow shop problems
are proposed by many authors. Brah and Hunsucker [10]
present a branch and bound algorithm, and it is claimed that
the method could also be used to optimize other criteria than
makespan. Portmann, Vignier, Dardihac and Dezalay [11]
improve the branch and bound method of Brah and Hunsucker
by improving their lower bound and reducing the number of
branches used in the search tree. Moursli and Pochet [12]
propose a branch and bound algorithm for the hybrid flow
shop scheduling problem, each stage being composed of
identical parallel machines.
 When an exact algorithm is applied to large flexible flow
shop problems in particular, the optimum approach can take
hours or days to derive a solution. On the other hand, a
heuristic approach is much faster but does not guarantee an
optimum solution. Gupta [13] proposes heuristic techniques
for a simplified flexible flow shop makespan problem with
two stages and only one machine in the second stage. The
proposed heuristics are based on extensions of Johnson’s
algorithm. Sriskandarajah and Sethi [14] develop simple
heuristic algorithms for the two-stage flexible flow shop
problem. They discuss the worst and average case
performance of algorithms of finding minimum makespan
schedules. Their solutions are based on Johnson’s rule.
Guinet, Solomon, Kedia, and Dussauchoy [15] propose a
heuristic for the makespan minimization problem in a two-
stage flexible flow shop based on Johnson’s rule. They
compare this heuristic with the Shortest Processing Time
(SPT) and the Longest Processing Time (LPT) dispatching
rules. They conclude that the LPT rule gives good results for
the makespan problem in a two-stage flexible flow shop.
Gupta and Tunc [16] consider the two-stage flow shop
scheduling problem when there is one machine at stage one
and the number of identical machines in parallel at stage two
is less than the total number of jobs. The setup and removal
times of each job at each stage are separated from the
processing times. They propose heuristic algorithms that are
empirically tested to determine the effectiveness in finding an
optimal one. Santos, Hunsucker and Deal [17] investigate
scheduling procedures which seek to minimize the makespan
in a static flow shop with multiple processors. Their method is

to generate an initial permutation schedule based on the
Palmer, CDS, Gupta and Dannenbring flow shop heuristics,
and such a heuristic is then followed by the application of the
First in First out (FIFO) rule.
 The question raised for the constructive algorithms is
whether it is possible to improve their solution quality.
Stagnation in a local optimum is one drawback of constructive
algorithms, while most iterative algorithms (or artificial
intelligent search techniques) always try to find a better
solution or escape from a local optimum to reach globally
better solutions. Jones, Mirrazavi, and Tamiz [18] state that
70% of the articles utilize genetic algorithms as the primary
metaheuristic, 24% simulated annealing and only 6% tabu
search. The genetic algorithm is so popular due to the
flexibility of this technique. Thus, to determine near-optimal
solutions, a genetic algorithm is proposed as an iterative
algorithm in this paper as well.
 Genetic algorithms are stochastic search methods for
optimization problems based on the mechanism of natural
selection and genetics by using the concept of the survival of
the fittest tenet and offspring creation of Darwinian evolution.
Recently, a genetic algorithm has been applied to harder
combinatorial optimization problems [19, 20] because it has
better characteristics, e.g. there is a smaller effect on the
calculations when the system becomes more complex or
larger. For example, Reeves [21] applies a genetic algorithm
to the flow shop makespan problem. Cheng, Gen, and
Tozawa [22] address the earliness/tardiness scheduling
problem with identical parallel machines. A genetic algorithm
is also applied to solve this problem. Ruiz, Maroto, and
Alcaraz [23] use a genetic algorithm to deal with the
permutation flow shop scheduling problem with sequence-
dependent setup times. However, little research has been
done for flexible flow shop scheduling problems, especially
for the general case with unrelated parallel machines (see for
instance the recent review on scheduling with setup times by
Allahverdi, Ng, Cheng, and Kovalyov [24]). Thus, in this
paper we will investigate how to apply a genetic algorithm to
solve the flexible flow shop problem with unrelated parallel
machines.
 Although the genetic algorithm has gained many
applications, it is reported that the traditional genetic
algorithm often suffers from the trouble of premature
convergence, the difficulty in constructing fitness functions
and parameter dependence. So far, many improvements have
been proposed to enhance the performance of a genetic
algorithm, especially by the use of particular initial
populations or a hybrid genetic algorithm.
 The purpose of this paper is to present and compare several
constructive and genetic algorithms to solve the flexible flow
shop scheduling problem with unrelated parallel machines and
sequence- and machine-dependent setup times. In addition,
while many papers have studied only the makespan criterion,
we consider this scheduling problem with two optimization
criteria. One reason for this consideration is the increasing
pressure of high competition while customers expect ordered
goods to be delivered on time.

3

 The rest of the paper is organized as follows: The problem
considered in this paper is described in Section 2. The
mathematical model for this problem is introduced in Section
3. In Section 4, constructive heuristics for the flexible flow
shop problem are sketched and improvement heuristics are
proposed in Section 5 whereas Section 6 and Section 7
discuss the variants of the genetic algorithm. Computational
results for the heuristics are briefly discussed in Section 8.
Conclusions are given in Section 9.

2 Problem description

In a flexible flow shop problem, a set of n independent
customer orders, j ∈ {1, 2, ..., n}, with due dates, d1 , ... , dn
has to be processed. Since customer orders may not arrive
simultaneously in real-life problems, we assume that they are
available at non-negative release times, r1 , ... , rn. Each job j
consists of a chain of k (k ≥ 2) different operations, 1

jO , ...,
k
jO , which have to be processed in this order. Each job j has

its fixed standard processing time t
jps for every stage t, t ∈

{1, 2, ..., k}. Moreover, at each stage t, there is a set of mt
unrelated parallel machines, i ∈ {1, 2, ..., mt}, where some of
the production stages may have only one machine, but at least
one production stage must have multiple machines. Hence,
machine i at stage t can process job j at the relative speed t

ijv .

The processing time t
ijp of job j on machine i at stage t is

equal to t
ij

t
j vps .

 This problem assumes a static and deterministic scheduling
environment. There are no precedence relationships between
jobs. Preemption is not allowed; i.e., once an operation is
started, it must be completed without interruption. The
operations of a job have to be realized sequentially, without
overlapping between stages. Job splitting is not permitted.
 Setup times considered in this problem are classified into
two types: (1) a machine-dependent setup time and (2) a
sequence-dependent setup time. A machine-dependent setup
time deals with the setup time that depends on the machine to
which a job is assigned. It is assumed to occur only when a
job is assigned to a machine at the first position at some stage.
It means that the length of the setup time (or changeover time)

t
ijch of job j if job j is assigned to machine i in the first

position at any stage t depends on the machine performing it.
Hence, a machine-dependent setup time is concerned with the
job in the first sequence at any stage, whereas a sequence-
dependence setup time is considered between the further jobs.

The setup time t
ljs between job l and job j at stage t, where

job l is processed directly before job j on the same machine,
might have different values depending on both the job just
completed and the job to be processed (sequence-dependent).
All setup times are known and constant.

 The following two restrictions should also be fulfilled: (1)
no machine can process more than one job at the same time;
(2) no job can be processed by more than one machine at the
same time. In addition, the release date t

ia (or machine
availability) of a machine for every stage is not necessarily
equal to zero. However, the machines are continuously
available from this availability time.
 Let the completion time of job j be Cj, then

Cmax =
}..1{

max
nj∈

{ Cj }.

 Moreover, let Uj = 1 if due date for job j is smaller than the
completion time Cj of job j, otherwise Uj = 0. The total
number of tardy jobs (ηT) is defined as

ηT = ∑
=

n

j
jU

1

 The objective is to seek a schedule that minimizes a convex
combination of makespan and the number of tardy jobs. Thus,
the objective function value is defined by

λCmax + (1 – λ)ηT ,
where 0 ≤ λ ≤ 1. λ denotes the weight (or relative
importance) given to Cmax and ηT.

3 Mathematical model

In this section, we provide a 0-1 mixed integer linear
programming formulation for the problem under
consideration.

3.1 Notations

t stage index, t = 1, 2, 3, . . . , k
i machine index, i = 1, 2, 3, . . . , mt

j, l job index, j, l = 1, 2, 3, . . . , n
rj release date of job j
mt number of parallel machines at stage t
dj due date of job j

t
jls setup time between job j and job l at stage t

t
ijch setup time of job j if job j is assigned to machine i at

the first position at stage t
t
jps standard processing time of job j at stage t

t
ijv relative speed of machine i at stage t for job j

t
ia time when machine i at stage t becomes available

t
ijlX 1 if job j is scheduled immediately before job l on

machine i at stage t, and 0 otherwise
t
jO operating time of job j at stage t
t
jC completion time of job j at stage t

Cmax the makespan
Uj a Boolean variable; 1 if job j is tardy, and 0

otherwise
Tj tardiness of job j
ηT the total number of tardy jobs in the schedule

4

3.2 Mathematical formulation

The problem can be formulated as follows.

minimize λCmax + (1 – λ)ηT (1)
Subject to:

1
1 0

∑ =∑
= =

tm

i

n

j

t
ijlX ,∀t, l (2)

1
1

1

1
∑ =∑
=

+

=

tm

i

n

l

t
ijlX ,∀t, j (3)

1
1

1
0 =∑

+

=

n

l

t
liX ,∀t, i (4)

1
0

)1(=∑
=

+

n

j

t
nijX ,∀t, i (5)

0=t
ijjX ,∀t, i, j (6)

∑=∑
+

==

1

10

n

j

t
ilj

n

j

t
ijl XX ,∀t, i, j (7)

}1,0{∈t
ijlX ,∀t, i, j, l ; j = 0; l = n+1 (8)

 ∑ ∑=
=

+

=

tm

i

n

l

t
ijlt

ij

t
jt

j X
v

ps
O

1

1

1

,∀t, j (9)

∑ −++≥−
=

tm

i

t
ijl

t
l

t
jl

t
j

t
l BXOsCC

1
)1)((,∀t, j, l; j≠l (10)

0≥t
jC ,∀t, j (11)

t
l

m

i

t
li

t
il

m

i

n

j

t
jl

t
ijl

t
l

t
l OXchsXCC

tt

+∑+∑ ∑≥−
== =

−

1
0

1 1

1 ,∀t, l (12)

jj rC =0 ,∀j (13)

t
j

m

i

t
li

t
il

m

i

t
ji

t
i

t
j OXchXaC

tt

+∑+∑≥
== 1

0
1

0 ,∀t, j (14)

k
jCC ≥max ,∀j (15)

j
k
jj dCT −≥ ,∀j (16)

Tj ≥ 0 ,∀j (17)
Uj ≤ BTj ,∀j (18)
BUj ≥ Tj ,∀j (19)

ηT = ∑
=

n

j
jU

1
 ,∀j (20)

Uj ∈ {0,1} ,∀j (21)

 Equation (1) describes the objective function. We have

t
liX 0 = 1 if the job l is sequenced as the first job on machine i

at stage t, and t
nijX)1(+ = 1 if job j is sequenced as the last job

on machine i at stage t. Constraints (2)–(8) ensure that the
partial schedule on each machine at each stage is feasible.
Constraint sets (2) and (3) ensure that only one job is assigned
to each sequence position at each stage. Constraint sets (4)
and (5) ensure that only one job will be assigned to the first
and last positions, respectively, on each machine at each
stage. Constraint (6) assures that after the job has been

finished at any stage, it cannot be reprocessed at the same
stage. Constraint (7) forces to construct a consistent sequence
at every stage. Constraint (8) specifies the decision variables

t
ijlX as binary variables. Constraint (9) determines the

operating time of every job which is dependent on the
machine. Constraints (10)–(14) find the completion time of
every job. Constraint (10) is a set of disjunctive constraints. It
states that, if jobs j and l are scheduled on the same machine
at a particular stage with job j scheduled before job l, then job
j must complete the processing before job l can begin. This
constraint set forces job l to follow job j by at least the
processing time of job l plus the setup time from j to l if job l
is immediately scheduled after job j. The value of B is set to a
very big constant, i.e., greater than the sum of all job
processing times and setup times. Constraint (11) ensures that
the completion time of every job at each stage is a non-
negative value. Constraint (12) specifies the conjunctive
precedence constraints for the jobs, which says that a job
cannot start its processing at stage t + 1 before it finishes at
stage t. Constraint (13) applies only to stage one, saying that a
job cannot start its processing at stage one before its release
date. Constraint (14) applies only to jobs that are assigned to
the first sequence on each machine, that is, the job cannot start
its processing before machine availability. Constraint set (15)
links the makespan decision variable. Constraint sets (16) and
(17) determine the correct value of the tardiness (Tj).
Constraint set (16) determines the correct value of the lateness
(Lj) and (17) specifies only the positive lateness as the
tardiness (Tj = max{ 0, dC k

j − }). Constraint sets (18)–(21)
link the decision variable of the number of tardy jobs, that is,
if tardiness is larger than zero, the job is tardy; otherwise this
job is not tardy.
 It is noted that an optimal solution can be obtained by
running a commercial mathematical programming software,
CPLEX 8.0.0 and AMPL, with an Intel Pentium 4 2.00 GHz
CPU. We have found that the mathematical model can be
used for solving problems with up to six jobs and four stages
in acceptable time.

4. Constructive algorithms

Since the flexible flow shop scheduling problem is NP-hard,
algorithms for finding an optimal solution in polynomial time
are therefore unlikely to exist. Thus, heuristic methods are
studied to find approximate solutions. Most researchers
develop existing heuristics for the classical flexible flow shop
problem with identical machines by using a particular
sequencing rule for the first stage. They follow the same
scheme (see Santos, Hunsucker and Deal [17]). Firstly, a job
sequence is determined according to a particular sequencing
rule using modified flow shop algorithms as shown in detail in
this section. Secondly, jobs are assigned as soon as possible to
the machines at every stage using the job sequence
determined for the first stage. There are basically two
approaches for this subproblem. The first way is that for the
other stages, i.e. from stage two to stage k, jobs are ordered

5

according to their completion times at the previous stage. This
means that the FIFO (First in First out) rule is used to find the
job sequence for the next stage by means of the job sequence
of the previous stage. The second way is to sequence the jobs
for the other stages by using the same job sequence as for the
first stage. In other words, the permutation flexible flow shop
sequencing problem determines the order of processing the
jobs on all machines. We will make use of both procedures
and briefly discuss the modifications for the problem under
consideration.
 Assume now that a job sequence for the first stage has
already been determined. Then we have to solve the problem
of scheduling n jobs on unrelated parallel machines with
sequence- and machine-dependent setup times using this
given job sequence for the first stage. A greedy algorithm
constructs a schedule for the n jobs at a particular stage
provided that a certain job sequence for this stage is known
(remind that the job sequence for this particular stage is
derived either from the FIFO or from the permutation rule).
The objective of the greedy scheduling algorithm is to
minimize the flow time and the idle time of the machines. The
idea is to balance evenly the workload in a heuristic way as
much as possible.
 In order to determine the job sequence for the first stage by
some heuristic, we remind that the processing and setup times
for every job are dependent on the machine and the previous
job, respectively. This means that they are not fixed, until an
assignment of jobs to machines for the corresponding stage
has been done. Thus, for applying an algorithm for fixing the
job sequence for stage one, an algorithm for finding the
representatives of the machine speeds and the setup times is
necessary. This algorithm is as follows.
 The representatives of machine speed t

ijv / and setup time
t

ljs / for stage t, t = 1,…,k , use the minimum, maximum and

average values of the data. Thus, the representative of the
operating time of job j at stage t is the sum of the processing
time t

ij
t
j vps / plus the representative of the setup time t

ljs / .

Nine combinations of relative speeds and setup times will be
used in our algorithm. The job sequence for the first stage is
then fixed as the job sequence with the best function value
obtained by all combinations of the nine different relative
speeds and setup times.
 For determining the job sequence for the first stage, we
adapt and develop several basic dispatching rules and
constructive algorithms for the flow shop makespan
scheduling problem. Some of the dispatching rules are related
to tardiness-based criteria, while other are used mainly for
comparision purposes and to have a broad spectrum of
solutions in the initial population. As the basic dispatching
rules, we use the rules given by Shortest Processing Time
(SPT), Longest Processing Time (LPT), Earliest Release Date
first (ERD), Earliest Due Date first (EDD), Minimum Slack
Time first (MST), Slack time per Processing time (S/P), and
Hybrid SPT and EDD (HSE) rules, whereas as flow shop

makespan heuristics, we use the algorithms given by Palmer
[25], Campbell, Dudek, and Smith [26], Gupta [27], and
Dannenbring [28] and the insertion heuristic by Nawaz,
Enscore, and Ham [29]. Notice that the first four algorithms
try to minimize makespan while the insertion heuristcs can be
used for any regular optimization criterion and for the multi-
criteria problem under consideration too.

4.1 Dispatching rules

The Shortest Processing Time (SPT) rule is a simple
dispatching rule, in which the jobs are sequenced in non-
decreasing order of the processing times, whereas the Longest
Processing Time (LPT) rule orders the jobs in non-increasing
order of their processing times. In the single machine model,
the SPT rule is proved that the sum of completion times and
mean lateness are minimized by using it [1]. For parallel
machines, the LPT rule tends to balance the workload over the
machines. The reasoning is to keep jobs with short processing
times to be assigned and sequenced without affecting the
workload balance. However, due to the flexible flow shop
problems with unrelated parallel machine, we have to adapt
the SPT and LPT rules by using the representative of the
operating time as stated above. Then, the best solution is
selected among the nine combinations of relative machine
speeds and setup times.
 The Earliest Release Date first (ERD) rule is equivalent to
the well-known first-in-first-out (FIFO) rule. The Earliest Due
Date first (EDD) rule schedules the jobs according to non-
decreasing due dates of the jobs. The ERD rule in a sense
minimizes the variation in the waiting times of the jobs at a
machine, whereas the EDD rule tends to minimize the
maximum lateness [30]. The Minimum Slack Time first
(MST) rule is a variation of the EDD rule. This rule concerns
the remaining slack of each job, defined as its due date minus
the processing time required to process it. The Slack time per
Processing time (S/P) is similar to the MST rule, but its slack
time is divided by the processing time required as well.
Again, the jobs are subsequently ranked in a non-decreasing
order of each rule, and nine combinations of representatives
of relative speeds and setup times are considered (expect for
the EDD rule).
 The hybrid SPT and EDD (HSE) rule is developed to
combine both SPT and EDD rules. Firstly, consider the
processing times of each job and determine the relative
processing time compared to the maximum processing time
required. Secondly, determine the relative due date compared
to the maximum due date. Next, calculate the priority value
of each job by using the weight (or relative importance) given
to Cmax and ηT for the relative processing time and relative due
date.

4.2 Palmer

A heuristic developed by Palmer [25], in an effort to use
Johnson’s rule, proposes a slope order index to sequence the
jobs on the machines based on the processing times. The idea

6

is to give priority to jobs that have a tendency of progressing
from short times to long times as they move through the
stages. It means that the first stage sequence can be generated
based upon a non-increasing order of the slope indices.

Now, the modified Palmer’s method (in the following
denoted by PAL) for the flexible flow shop problem with
unrelated parallel machines and sequence-dependent setup
times is developed as follows.

Let t
lps be the standard processing time of job j at stage t,

t
ijv / be the representative of the relative speed on machine i at

stage t for job j, and t
ljs / be the representative of the setup

time between job l and job j at stage t. Then),,(// t
lj

t
ij svjS

denotes the slope index for job j at the relative speed t
ijv / and

setup time t
ljs / . PAL’s slope index for the flexible flow shop

problem with unrelated parallel machines and setup times is
calculated as follows:

∑
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−−−=
=

k

t

t
ljt

ij

t
jt

lj
t

ij s
v
ps

tksvjS
1

/
/

//))](12([),,(

4.3 Campbell, Dudek, and Smith

Campbell, Dudek, and Smith [26] develop one of the most
significant heuristic methods for the makespan problem
known as CDS algorithm. Its strength lies in two properties:
(1) it uses Johnson’s rule in a heuristic fashion, and (2) it
generally creates several schedules from which a “best”
schedule can be chosen. In so doing, k – 1 sub-problems are
created and Johnson’s rule is applied to each of the sub-
problems. Thus, k – 1 sequences are generated. Since
Johnson’s algorithm is a two-stage algorithm, a k-stage
problem must be collapsed into a two-stage problem. Let g be
a counter for the k – 1 sub-problems. Again, due to the
unrelated parallel machines, the constructed processing time
for the “first” stage is denoted as),,,(// t

lj
t

ij svgja where j

denotes the job, g denotes the g-th sub-problem and t
ijv / and

t
ljs / are the representatives of the relative speed and setup

time, respectively. Similarly,),,,(// t
lj

t
ij svgjb denotes the

“second” stage processing time. Given these definitions, the
constructed processing times are calculated according to the
following two equations:

∑ +=
=

g

t

t
ljt

ij

t
jt

lj
t

ij s
v
ps

svgja
1

/
/

//)(),,,(

and

∑ +=
+−=

k

gkt

t
ljt

ij

t
jt

lj
t

ij s
v
ps

svgjb
1

/
/

//)(),,,(

4.4 Gupta

Gupta [27] provides an algorithm denoted by GUP, in a
similar manner as algorithm PAL by using a slope index.

Denote by),,(// t
lj

t
ij svjG the slope index of algorithm GUP

for job j at relative speed t
ijv / and setup time t

ljs / which is
calculated from

)}(){(min
),,(

1/
1/

1
/

/11

//

+
+

+

−≤≤
+++

=
g

ljg
ij

g
jg

ljg
ij

g
j

kg

jt
lj

t
ij

s
v
ps

s
v
ps

e
svjG

and

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+≤+−

+>+

=

)()(1

)()(1

/
/

1/
1/

1

/
/

1/
1/

1

k
ljk

ij

k
j

lj
ij

j

k
ljk

ij

k
j

lj
ij

j

j

s
v
ps

s
v
ps

if

s
v
ps

s
v
ps

if
e

 After calculating),,(// t
lj

t
ij svjG for all jobs, the jobs are

subsequently ranked in a non-decreasing order of the slope
indices.

4.5 Dannenbring

Like PAL’s rule, Dannenbring [28] develops a method by
using Johnson’s algorithm as a foundation. Furthermore, the
CDS and PAL algorithms are also exhibited. Dannenbring
constructs only one two-stage problem, but the processing
times for the constructed jobs reflect the behavior of PAL’s
slope index. In the following, this method is denoted by
DAN. Moreover, let),,(// t

lj
t

ij svja and),,(// t
lj

t
ij svjb be the

processing times for the constructed two-stage problem. They
are calculated using the following equations:

∑
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++−=
=

k

t

t
ljt

ij

t
jt

lj
t

ij s
v
ps

tksvja
1

/
/

//))(1(),,(

and

∑
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+×=
=

k

t

t
ljt

ij

t
jt

lj
t

ij s
v
ps

tsvjb
1

/
/

//)(),,(

4.6 Nawaz, Enscore and Ham

 Nawaz, Enscore and Ham [29] develop the probably best
constructive heuristic method for the permutation flow shop
makespan problem, called NEH algorithm. It is based on the
idea that a job with a high total operating time on the
machines should be placed first at an appropriate relative
order in the sequence. Thus, jobs are sorted in non-increasing
order of their total operating time requirements. The final
sequence is built in a constructive way, adding a new job at
each step and finding the best partial solution. For example,
the NEH algorithm inserts a third job into the previous partial
solution that gives the best objective function value under
consideration. However, the relative position of the two
previous job sequence remains fixed. The algorithm repeats
the process for the remaining jobs according to the initial
ordering of the total operating time requirements.
 Again, to apply the NEH algorithm to the flexible flow
shop problem with unrelated parallel machines, the total

7

operating times for calculating the job sequence for the first
stage are calculated for the nine combinations of relative
speeds of machines and setup times. Contrary to the
algorithms presented before, the NEH algorithm constructs
job sequences by considering the minimization of the convex
combination of makespan and tardy number of jobs.

5 Improvement Heuristics

After several constructive algorithms have been adapted in the
previous section, we now describe a fast polynomial
improvement heuristic applied to the solutions found by the
constructive algorithms.
 Since the constructive algorithms (especially some
algorithms that are adapted from the flow shop makespan
heuristics and some dispatching rules such as SPT, LPT rules
without due date considerations) do not explicitly
minimization of number of tardy jobs, in this section we will
improve the solution by concerning the due date criterion.
 In order to find a satisfactory solution to the multicriteria
problem considered in this paper, we apply the following
heuristic by using the shift neighborhood as a polynomial
improvement mechanism based on the idea that we will
consider the jobs that are tardy and move them randomly left
and right in order to improve the overall criterion value.

Step 1: Find a first stage sequence solution given for each

combination of relative machine speed and setup
times using a heuristic from Section 4 and set it as the
current sequence solution and sequence list (L).

Step 2: While Sequence list (L) is not empty do
- Choose the first job j in the sequence list.
- If due date dj ≤ completion time k

jC , we randomly

move the selected job left and right, and find the
best sequence solution among the two neighbors
and update the best sequence solution as the
current sequence solution.

 - Delete job j from the sequence list.
 end while

 Reminding that there are nine combination solutions
generated from a heuristic in each iteration and find the best
solution for the multi-criteria problem under consideration
among them. In step 2, there are generated at most 2×(n-1)
neighbors, if all jobs under consideration are late, i.e. at most
O(n) job sequences are investigated by the improvement
algorithm.

6 A genetic algorithm

A genetic algorithm (GA) developed by Holland [31] is an
iterative heuristic based on Darwin’s evolutionary theory
about “survival of the fittest and natural selection”. It belongs
to the evolutionary class of artificial intelligent (AI)
techniques.

 A GA is characterized by a parallel search of the state space
in contrast to a point-by-point search by conventional
optimization techniques. The parallel search is achieved by
keeping a set of possible solutions under consideration, called
a population. An individual in the population is a string of
symbols, and it is an abstract representation of a solution. The
algorithm starts with an initial generation of artificial
individuals which are often created randomly. Each symbol is
called a gene and each string of genes is termed as a
chromosome. The individuals in the population are evaluated
by some fitness measure to describe quantitatively how well
the individual masters its task. The population of
chromosomes evolves from some generation to the next
through the use of two types of genetic operators: (1) unary
operators such as mutation and inversion which change the
genetic structure of a single chromosome, and (2) a higher-
order operator, referred to as crossover which consists of
obtaining new individual(s) by combining the genetic material
from two selected parent chromosomes. When applying
crossover, two individuals (parents) are selected from the
population and new solution(s), called offspring, is (are)
created. Mutation creates a new solution by a random change
on a selected individual. The genetic operators are applied to
randomly selected parents to generate new offspring. Then the
new population is selected out of the individuals of the current
population and the new generated chromosomes.

6.1 Representation

The application of a GA requires the representation of a
solution. It is the primary and key issue to encode the
problem into a search solution for the GA. Consideration of a
job permutation is straightforward and widely used in many
previous works on GA for the flow shop problem (see e.g.
Werner [32]). Thus, in our GA, we apply a permutation-based
code (or job code) using integers as the chromosome coding
scheme. For instance, one chromosome of an example with
nine jobs can be coded as the job sequence [9 3 6 5 8 7 2 4 1].

6.2 Initialization

Generally, the initial population is generated in a random way
from the solution space. Later we also use an initial
population, when one or several particular solutions obtained
by constructive algorithms are included.

6.3 Evaluation

During each generation, chromosomes are evaluated using
some measure of fitness. In most optimization applications,
the fitness function is constructed based on the original
objective function. The fitness value of each chromosome is a
key measure to guide the direction of the search in GA. Due
to the minimization problem, the fitness value must be in
inverse proportion to the objective function value so that a
fitter chromosome has a larger fitness value.

8

sizepopulationz
vf

vfitness
z

z _,...,1,
)(

1)(== ;

where fitness(vz) is the fitness value and f(vz) is the objective
function value of the z-th chromosome for the complete
schedule generated from the corresponding job sequence for
the first stage using a greedy algorithm (see Section 4).

In this paper, the objective is to minimize a convex
combination of makespan and the number of tardy jobs. Thus,
the fitness value of a chromosome, fitness(vz), is given by

;sizepopulationz

vUvC

vfitness n

j
zjz

z _,...,1,

1)()1()(

1)(

1
max

=

+−+

=

∑
=

λλ

where Cmax(vz) is the makespan of the z-th chromosome (resp.
of the resulting complete schedule), Uj(vz) is a Boolean
variable for job j of the z-th chromosome which is equal to 1
if job j is tardy, and 0 otherwise, and λ denotes the weight
given to makespan and number of tardy jobs. The largest
value of the fitness function is the lowest value of the convex
combination of makespan and the number of tardy jobs. In
the denominator, value one is added in order to prevent a
division by zero when the weight λ and the number of tardy
jobs are equal to zero.

6.4 Selection

An elitist policy and enlarged sampling space technique are
used. Both parents and the offspring have the same chance of
completing for survival. Then Holland’s proportionate
selection or roulette wheel selection is employed to reproduce
the next generation based on the current enlarged population.
The idea is to determine a selection probability (also called
survival probability) for each chromosome proportional to its
fitness value. For the chromosome vz with fitness fitness(vz),
its selection probability prob(vz) is calculated as follows:

∑
=

+

=

sizeoffspringsizepopulation

z
z

z
z

vfitness

vfitness
vprob __

1
)(

)(
)(

6.5 Crossover

Crossover and mutation are the most important parts of a GA.
The crossover is used in GA to exchange information among
chromosomes to introduce offspring. Based on a job
permutation encoding, the partially mapped crossover (PMX)
is mostly used, because it always creates a feasible offspring.
In this paper, we will propose a new crossover by combining
the order crossover (OX) and the position-based crossover
(PBX), and we denote it as OPX. Both OX and PBX create
only one offspring, whereas PMX create a couple of
offspring. Thus, the proposed crossover can create a couple
of offspring like PMX as well, that is both can be compared in
a fair way.

6.5.1 PMX

PMX (partially mapped crossover) may be the most popular
crossover operator when operating with permutations. Firstly,
choose two parents P1 and P2, e.g. P1 = [1 2 3 4 5 6 7 8 9]
and P2 = [9 3 7 8 2 6 5 1 4], and two cutting sites along the
string are randomly chosen, e.g. 3 and 7. The substrings
defined by the two cutpoints are called mapping sections.
Secondly, exchange two substrings between parents to
produce protochilderen, and then they will be [1 2 3|8 2 6 5|8
9] and [9 3 7|4 5 6 7|1 4]. It is clear that protochildren will
often lead to infeasible solutions. Then, one needs to
determine the mapping relationship between the two mapping
sections and finally, we legalize the offspring using this
mapping relationship. In the first protochild, we can map the
two infeasible genes 2 and 8 outside the mapping section, by
using the mapping swaps, for instance, 2 in the first
protochild’s mapping section can be mapped to 5 in the
second protochild’s mapping section corresponding to the
position. It does not however finish, because 5 is in the first
protochild’s mapping section as well. Again, 5 in the first
protochild can be mapped to 7 in a similar way. At last, 2 in
the first protochild can be swapped to 7. Similarly, 8 in the
first protochild can be mapped to 4. Consequently, the first
offspring is [1 7 3| 8 2 6 5| 4 9]. Then, the second offspring is
analogously created as [9 3 2| 4 5 6 7|1 8].

6.5.2 OPX

OPX (combined order and position-based crossover) may be a
good crossover choice, in which it creates feasible solutions
like PMX and combines the characteristics of OX and PBX as
well. We will create the first offspring based on OX, whereas
the second offspring is characterized by PBX. Again two
parents P1 and P2 are randomly selected, and consider the
same example as for PMX from the last section. Then,
randomly select a substring from the first parent, e.g. [1 2 3|4
5 6 7|8 9]. Copy the substring into first protochild
corresponding to the first parent position, e.g. [_ _ _|4 5 6 7|_
_]. Then, delete all the symbols from the second parent which
are already in the substring and place its symbols into the
unfixed positions in the first protochild from left to right
according to the second parent order, e.g. [9 3 8|4 5 6 7|2 1].
To create the second offspring, the second protochild is
created by copying the symbols from the second parent that
jobs are the same as the symbols in the substring in
corresponding position, e.g. [_ _ 7 _ _ 6 5 _ 4]. Then, place
the symbols form the first parent into the unfixed positions in
the second protochild from left to right according to the order
of the first parent regarding the substring symbols to produce
the second offspring, [1 2 7 3 8 6 5 9 4].

6.6 Mutation

Mutation serves to prevent all solutions in the population from
falling into a local optimum. In this paper, two mutation
operations named pairwise interchange move, and shift move
are tested.

9

6.6.1 Pairwise interchange move

A pairwise interchange move (PI) exchanges a pair of genes
πr, and πi, where 1 ≤ i, r ≤ n and i ≠ r. Such an operation
swaps the gene at position r and one at position i — π’=
[π1,…, πr-1, πi, πr+1, …, πi-1,πr, πi+1,…, πn]. For example,
assume that randomly one parent, [4 9 8 7 3 1 6 2 5] is
selected, and then randomly the couple of gene positions to be
exchanged is selected, e.g. positions 1 and 3. Thus, the
offspring will be [8 9 4 7 3 1 6 2 5]. The pairwise interchange
neighborhood has n(n-1)/2 neighbors.

6.6.2 Shift move

A shift move (SM) changes the relative position of exactly
one job. This means that a gene πr at position r is shifted to
position i, while leaving all other relative gene orders
unchanged. If 1≤ r < i ≤ n, it is called a right shift — π’=
(π1,…, πr-1, πr+1, …, πi, πr,…, πn). If 1≤ i < r ≤ n, it is called a
left shift — π’= (π1,… πr, πi,…,πr-1, πr+1, …, πn). For instance,
assume that randomly one parent in the current generation is
selected, say [4 9 8 7 3 1 6 2 5], and then randomly a couple
of gene positions for performing the shift is selected, e.g.
positions 2 and 7 (in this case, it is a right shift). The offspring
will be [4 8 7 3 1 6 9 2 5]. However, if positions 7 and 2 are
randomly selected (i.e. it is a left shift), the offspring will be
[4 6 9 8 7 3 1 2 5]. The shift neighborhood has (n–1)2
neighbors.

6.7 Termination criteria

In fact, after many generations of evolution throughout the
repeated applications of selection, crossover, and mutation,
the individuals in the population will often begin to look alike.
At this point, the GA typically terminates because additional
evolution will produce little improvement in fitness. Several
termination criteria may be used, where the most simple one is
to stop just after some predetermined number of generations.
However, in this paper we will use a certain CPU time limit as
the termination criterion.

7 Choice of an initial population

A GA has been proven to be effective for many combinatorial
optimization problems [19, 20], and it seems natural to apply
such an approach to scheduling problems. To improve the
quality of the solution finally obtained, we also investigated
the influence of the choice of an appropriate initial population
by using the constructive algorithms.
 To this end, we used as one initial solution that obtained
from the constructive algorithms SPT, LPT, ERD, EDD,
MST, S/P, HSE, PAL, CDS, GUP, DAN and NEH, as well as
the other polynomial improvement heuristics respectively (the
other initial solutions are still randomly generated). In
addition, we used all selected constructive algorithms in
parallel as a part of the initial population.

8 Computational results

Firstly, we studied the constructive algorithms that are
separated into four main groups. The first heuristic group are
the simple dispatching rules such as SPT, LPT, ERD, EDD,
MST, S/P, and HSE. The second heuristic group are the flow
shop makespan heuristics adapted such as PAL, CDS, GUP,
DAN, and NEH. The third and fourth heuristic groups are
generated from the first two groups of heuristics where the
solutions are improved by the polynomial improvement
algorithm (based on shift moves), and they are denoted by the
first letter “I” in front of the letters describing the heuristics of
the first two groups. We used problems with 10 jobs × 5
stages, 30 jobs × 10 stages, and 20 jobs × 10 stages. For all
problem sizes, we tested instances with λ ∈ {0, 0.05, 0.1, 0.5,
and 1} in the objective function. Ten different instances for
each problem size have been run.

Table 1 Average performance of constructive algorithms

λ Problem
 size SPT LPT ERD EDD MST SPP HSE

10×5
30×10
50×20

2.3
6.1
5.9

1.7
7.0
7.1

2.8
6.4
7.2

3.1
10.5
14.7

3.2
10.4
14.7

3.0
10.3
12.8

2.4
6.0
5.6 0

Sum 14.3 15.8 16.4 28.3 28.3 26.1 14
10×5
30×10
50×20

18.019
17.115
8.204

12.04
14.069
7.951

23.393
18.933
9.812

23.259
20.220
11.411

21.379
17.544
10.627

21.269
16.943
9.544

18.029
15.844
8.6160.05

Sum 43.338 34.06 52.138 54.890 49.550 47.756 42.489
10×5
30×10
50×20

17.068
16.154
8.076

11.024
12.677
7.694

22.058
17.994
9.663

21.810
18.669
10.411

19.369
15.928
9.596

19.668
15.254
8.711

17.005
14.871
8.4390.1

Sum 41.298 31.395 49.715 50.890 44.893 43.633 40.315
10×5
30×10
50×20

17.004
15.902
8.095

10.74
12.075
7.576

21.682
17.790
9.663

21.457
17.908
9.692

18.345
15.078
8.823

18.736
14.242
8.108

16.948
14.483
8.3640.5

Sum 41.001 30.391 49.135 49.057 42.246 41.086 39.795
10×5
30×10
50×20

16.888
15.998

8.09

10.647
12.122
7.549

21.551
17.869
9.656

21.32
17.938
9.591

18.106
15.090
8.714

18.508
14.23
8.017

16.888
15.998
8.0901.0

Sum 40.976 30.318 49.076 48.849 41.910 40.755 40.976

λ Problem
size PAL CDS GUP DAN NEH

10×5
30×10
50×20

1.9
6.1
8.2

1.2
4.3
5.1

1.8
5.9
6.4

2.0
5.8
7.8

0.5
0.5
0.8 0

Sum 16.2 10.6 14.1 15.6 1.8
10×5
30×10
50×20

10.892
16.143

7.58

9.095
11.527
6.555

13.322
14.063
7.709

10.717
14.121
8.107

1.815
0.021

0 0.05

Sum 34.615 27.177 35.094 32.945 1.836
10×5
30×10
50×20

9.906
15.146
7.216

7.814
10.513
6.292

12.225
12.856
7.517

9.545
13.163
7.739

2.136
0

0.026 0.1

Sum 32.268 24.619 32.598 30.447 2.162
10×5
30×10
50×20

9.884
14.82
7.028

7.222
10.089
6.166

12.001
12.387
7.486

9.308
12.821
7.544

2.563
0.067
0.076 0.5

Sum 31.732 23.477 31.874 29.673 2.706
10×5
30×10
50×20

9.813
14.902
6.996

7.047
10.156
6.139

11.871
12.438
7.472

9.175
12.902
7.510

2.46
0.087
0.048 1.0

Sum 31.711 23.342 31.781 29.587 2.595

10

Table 1 Average performance of constructive algorithms

λ Problem
size ISPT ILPT IERD IEDD IMST ISPP IHSE

10×5
30×10
50×20

0.9
2.3
3.1

0.8
3.5
4.5

1.4
3.0
4.1

1.3
4.3
6.3

1.6
4.8
5.0

1.4
4.6
8.1

1.0
2.9
4.1 0

Sum 6.3 8.8 8.5 11.9 11.4 14.1 8
10×5

30×10
50×20

5.801
9.299
4.508

4.889
7.602
5.195

8.02
10.022
4.474

7.244
10.591
5.952

6.675
11.228
6.539

5.588
7.282
6.143

6.855
7.448
5.092

0.0
5

Sum 19.608 17.686 22.516 23.787 24.442 19.013 19.395
10×5

30×10
50×20

5.502
8.720
4.829

2.909
6.869
4.785

6.436
9.834
5.106

7.004
9.022
6.252

6.140
10.883
5.627

6.76
6.908
5.578

6.071
9.005
4.783 0.1

Sum 19.051 14.563 21.376 22.278 22.65 19.246 19.859
10×5

30×10
50×20

7.048
8.690
5.211

3.068
6.435
4.681

4.135
9.506
4.818

7.819
10.257
5.296

6.247
8.482
6.286

5.559
7.513
5.219

4.842
9.936
4.928 0.5

Sum 20.949 14.184 18.459 23.372 21.015 18.291 19.706
10×5

30×10
50×20

6.776
8.882
5.015

2.548
6.641
4.668

4.393
9.645
5.027

8.101
11.081
5.622

6.932
8.711
5.830

5.699
6.882
5.377

5.869
8.759
4.948 1.0

Sum 20.673 13.857 19.065 24.804 21.473 17.958 19.576

λ Problem
size IPAL ICDS IGUP IDAN INEH

10×5
30×10
50×20

0.9a

3.3
4.3

0.5
2.7
2.5

0.8
3.6
3.5

1.1
3.3
4.7

0.5
0.5
0.8 0

Sum 8.5 5.7 7.9 9.1 1.8
10×5
30×10
50×20

3.701b

7.336
3.717

1.949
7.070
4.174

4.449
8.984
4.266

2.251
7.950
5.703

1.815
0.021

0 0.05

Sum 14.754 13.193 17.699 15.904 1.836
10×5
30×10
50×20

3.402
8.350
3.485

1.939
6.838
4.986

3.555
6.836
4.958

3.501
7.680
4.865

2.136
0

0.026 0.1

Sum 15.237 13.763 15.349 16.046 2.162
10×5
30×10
50×20

2.937
7.221
3.898

1.901
5.487
4.755

2.792
7.946
4.684

1.446
6.639
4.291

2.563
0.067
0.076 0.5

Sum 14.056 12.143 15.422 12.376 2.706
10×5
30×10
50×20

3.144
6.671
4.546

1.661
5.962
4.14

3.073
6.425
4.717

1.952
5.811
4.126

2.46
0.087
0.048 1.0

Sum 14.361 11.763 14.215 11.889 2.595
a average absolute deviation for λ = 0
b average percentage deviation for λ > 0

 An experiment was conducted to test with data such as the
standard processing times, relative machine speeds, setup
times, release dates and due dates. The standard processing
times are generated uniformly from the interval [10,100].
Due to the unrelated machine problem, the relative speeds are
distributed uniformly in the interval [0.7,1.3]. The setup
times, both sequence- and machine-dependent setup times, are
generated uniformly from the interval [0,50], whereas the
release dates are generated uniformly from the interval [0,20].
The due date of a job is set in a way that it is similar to the
approach presented by Rajendaran and Ziegler [33] and is as
follows:

dj = total of mean setup time of a job on all stages + ∑
=

k

t

t
jps

1

 +

(n – 1)×(mean processing time of a job on one

machine)×U(0,1)

where the mean processing time of a job on one machine is
determined by summing the mean setup time and standard
processing time of all jobs on all stages and dividing by the
number of machines.
 The results for the constructive algorithms are given in
Table 1. We give the average (absolute for λ = 0 resp.
percentage for λ > 0) deviation of a particular constructive
algorithm from the best constructive solution for three
problem sizes n× k.
 From these results it is obvious that the constructive
algorithms in the fourth heuristic group improved from flow
shop makespan heuristics from the second heuristic group
(i.e., PAL, CDS, GUP, DAN, and NEH) are better than the
dispatching rules in the first heuristic group (i.e., SPT, LPT,
EDD, MST, S/P, and HSE) as well as the third heuristic group
improved from them.
 Among the simple dispatching rules (heuristic Group I),
HSE rule outperforms the other dispatching rules for λ = 0,
and the LPT rule is better than the other rules for λ > 0.
Among the adapted flow shop makespan heuristics in
heuristic Group II, NEH algorithm is clearly the best
algorithm among all studied constructive heuristics (but in
fact, this algorithm takes the convex combination of both
criteria into account when selecting partial sequences). The
CDS algorithm is certainly the algorithm on the second rank
(but it is substantially worse than NEH even if the makespan
portion in the objective function value is dominant, i.e. for
large λ values).
 When we apply the polynomial improvement (‘reinsertion‘)
algorithm (denoted as the letter “I” first) to the solutions
obtained by the dispatching rules and adapted flow shop
makespan heuristics, we have found that the quality of the
solution in terms of the deviation from the best solution can
be improved by about 50 percentage except for NEH rule (it is
even independent of the concrete value of λ). It is noted that
the NEH rule is not improved by using the improvement
heuristics in INEH because the NEH rule is embedded by the
insertion algorithm itself (it confirms the excellent solution
quality by algorithm NEH). However, the improvement of
heuristics from the adapted flow shop makespan heuristics in
the heuristic Group IV is better than the improvement of
heuristics from the dispatching rules in the heuristic Group III
(since for most of the problems, there is an substantial portion
in the objective function value resulting from the makespan).
 Secondly, we studied the GA with random initial
population. The purpose of this study is to determine the
favorable GA parameters, i.e., population size, crossover
types, mutation types, as well as crossover and mutation rates.

11

 Given the above three different problem sizes, the
following GA parameter values were used in this test.
Population size : 30, 50, 70
Crossover type : PMX, OPX
Mutation type : PI, SM
Crossover rate : 0.1 through 0.9, in steps of 0.1
Mutation rate : 0.1 through 0.9, in steps of 0.1

Table 2 The effect of various population sizes on the
performance of the genetic algorithm

λ Problem size 30 50 70
10×5
30×10
50×20

0a

2.0162
0.4051

0
1.9159
0.3194

0
2.2693
0.4144 0

Sum 2.4213 2.2353 2.6837
10×5
30×10
50×20

1.2516b

3.4810
1.5130

1.5950
3.9820
1.7580

1.1617
4.7860
1.9880 0.05

Sum 6.2456 7.3350 7.9357
10×5
30×10
50×20

1.3760
2.8070
1.4780

1.3430
3.1730
1.7710

1.2540
3.8990
2.0200 0.1

Sum 5.6610 6.2870 7.1730
10×5
30×10
50×20

1.5832
2.9740
1.2990

1.4729
3.2940
1.6440

1.4307
3.9870
1.7990 0.5

Sum 5.8562 6.4109 7.2167
10×5
30×10
50×20

1.6149
2.9260
1.1870

1.4609
3.2730
1.5270

1.4021
3.9370
1.7190 1.0

Sum 5.7279 6.2609 7.0581
a average absolute deviation for λ = 0
b average percentage deviation for λ > 0

Table 3 The effect of the various crossover types on the
performance of the genetic algorithm

λ Problem size PMX OPX
10×5

30×10
50×20

0a

2.2109
0.3776

0
1.9234
0.3817 0

Sum 2.5885 2.3051
10×5

30×10
50×20

1.3214b

4.1920
1.7740

1.0605
3.9740
1.7310 0.05

Sum 7.2874 6.7655
10×5

30×10
50×20

1.4890
3.3900
1.7580

1.1600
3.1950
1.7540 0.1

Sum 6.6370 6.1090
10×5

30×10
50×20

1.6726
3.5200
1.5960

1.3186
3.3170
1.5650 0.5

Sum 6.7886 6.2006

1.0
10×5

30×10
50×20

1.6434
3.4740
1.4790

1.3418
3.2830
1.4760

 Sum 6.5964 6.1008
a average absolute deviation for λ = 0
b average percentage deviation for λ > 0

 From the preliminary tests, we set the time limit equal to
one second for the problems with ten jobs, ten seconds for the
problems with 30 jobs, and 30 seconds for the problems with
50 jobs. Again, for all tests we considered instances with λ ∈

{0, 0.05, 0.1, 0.5, and 1}. Table 2 through 4 present the effect
of the population size, crossover types and mutation types by
using the average (absolute resp. relative) deviation from the
best value as the performance measure.
 From the full factorial experiment, we analyzed our results
by means of a multi-factor Analysis of Variance (ANOVA)
technique. We have found that for population sizes, crossover
types, and mutation types there were statistically significant
differences. In general, a small population size (30) is
superior. The OPX crossover is clearly superior to the PMX
crossover. Since there were some interactions between
crossover types and mutation types for the problem size 30
jobs × 10 stages, if we select OPX as the crossover type,
pairwise interchange moves are better than shift moves for λ =
0. Consequently, the mutation operator should be based on
pairwise interchanges for λ = 0 and on shifts of jobs
otherwise. For ANOVA and Tukey’s test at a significance
level α = 0.05 in the crossover and mutation rates, we have
found that no particular mutation rate (we fixed 0.5) and
crossover rate (we fixed 0.8) are superior to the others.

Table 4 The effect of the various mutation types on the
performance of the genetic algorithm

λ Problem size PI SM
10×5
30×10
50×20

0a

2.2016
0.3632

0
1.9326
0.3961 0

Sum 2.5648 2.3287
10×5
30×10
50×20

1.3514b
4.4330
1.7510

1.0305
3.7330
1.7550 0.05

Sum 7.5354 6.5185
10×5
30×10
50×20

1.5430
3.5940
1.7700

1.1060
2.9910
1.7430 0.1

Sum 6.9070 5.840
10×5
30×10
50×20

1.7074
3.6590
1.5650

1.2838
3.1780
1.5960 0.5

Sum 6.9314 6.0578
10×5
30×10
50×20

1.6841
3.4740
1.4920

1.3011
3.2830
1.4630 1.0

Sum 6.6501 6.0471
a average absolute deviation for λ = 0
b average percentage deviation for λ > 0

 Finally, we used the recommended GA parameters to test
the choice of an appropriate initial population. The letters
before letters GA denote the heuristic rule as one initial
solution for GA. For example, SPTGA means that the SPT
rule is used as one initial solution for GA, or RNDGA means
that the initial population in GA is completely randomly
generated. In addition, we use some selected algorithms in
parallel as a part of the initial population. Based on each
heuristic group, we use all solutions in each heuristic group
stated above as a part of the initial population. Consequently,
we have four new choices of initial populations tested
(denoted as MIX1GA, MIX2GA, MIX3GA, and MIX4GA,
respectively).

12

Table 5 Comparisons of the genetic algorithm with different initial populations
λ Problem

size RNDGA SPTGA LPTGA ERDGA EDDGA MSTGA S/PGA HSEGA ISPTGA ILPTGA IERDGAIEDDGA IIMSTGA IS/PGA IHSEGA

10×5
30×10
50×20

0
1.26
0.84

0.04
1.14
0.92

0.02
1.16
0.86

0
1.26
0.92

0
1.04
0.92

0.04
1.10
0.76

0
1.26
0.86

0.02
1.24
1.04

0.04
1.18
0.86

0
1.38
0.98

0.04
1.34
1.04

0.02
1.10
0.64

0
1.02
0.82

0
1.14
0.88

0.08
1.18
0.96 0

Sum 2.10 2.10 2.04 2.18 1.96 1.90 2.12 2.30 2.08 2.36 2.42 1.76 1.84 2.02 2.22
10×5
30×10
50×20

1.080
3.518
1.400

1.122
3.780
2.211

1.091
4.005
1.735

0.915
4.100
1.453

1.007
3.453
1.971

1.007
3.139
1.709

1.049
3.656
1.549

1.196
3.396
1.575

1.328
4.179
2.226

0.877
4.262
1.594

1.018
4.746
1.808

1.220
3.485
1.293

1.568
3.725
1.896

1.018
3.456
1.703

1.162
4.408
2.523 0.05

Sum 5.998 7.113 6.831 6.468 6.431 5.855 6.254 6.167 7.733 6.733 7.572 5.998 7.189 6.177 8.093
10×5
30×10
50×20

0.935
2.666
1.675

1.129
2.624
1.952

1.153
2.956
1.824

1.399
3.107
1.570

1.407
2.748
1.793

1.237
2.655
1.800

1.156
2.862
1.593

1.035
2.645
2.042

1.101
3.255
2.139

0.995
3.826
2.879

1.163
3.166
1.889

1.114
2.915
2.044

0.916
3.437
1.842

1.120
2.917
1.632

0.866
3.796
2.251 0.1

Sum 5.276 5.705 5.933 6.076 5.948 5.692 5.611 5.722 6.495 7.700 6.218 6.073 6.195 5.669 6.913
10×5
30×10
50×20

1.070
2.352
1.651

1.088
2.512
1.786

1.066
2.723
1.880

0.956
2.646
1.719

0.987
2.715
1.841

0.980
2.896
1.781

1.040
2.505
1.540

1.137
2.836
1.521

0.892
3.112
2.130

0.896
2.532
1.674

0.591
3.420
1.864

0.977
2.336
1.944

0.847
3.000
1.756

1.307
2.224
2.019

1.287
3.315
2.171 0.5

Sum 5.073 5.386 5.669 5.321 5.543 5.657 5.085 5.494 6.134 5.102 5.875 5.257 5.603 5.550 6.773
10×5
30×10
50×20

0.936
2.253
1.472

1.298
2.241
1.635

0.764
2.118
1.672

1.007
2.495
1.481

0.786
2.040
1.650

0.929
2.618
1.450

0.781
2.420
1.664

1.298
2.241
1.635

0.840
3.045
1.912

0.773
2.786
2.000

0.741
3.203
1.806

1.198
2.306
1.526

0.929
3.493
1.930

1.290
2.202
2.032

1.519
3.770
2.130 1.0

Sum 4.660 5.174 4.554 4.983 4.476 4.997 4.865 5.174 5.797 5.558 5.750 5.029 6.352 5.524 7.419

λ Problem
size PALGA CDSGA GUPGA DANGA NEHGA IPALGA ICDSGA IGUPGA IDANGA INEHGA MIX1GA MIX2A MIX3A MIX4GA

10×5
30×10
50×20

0.02a

1.44
0.72

0.02
1.20
0.92

0.02
1.34
0.88

0.02
1.24
0.76

0
1.56
1.04

0.02
1.12
1.16

0
1.42
1.10

0
1.30
1.06

0
1.32
0.86

0
1.56
1.04

0
1.10
0.78

0
1.38
1.02

0
1.28
0.50

0
1.50
1.04 0

Sum 2.18 2.14 2.24 2.02 2.60 2.30 2.52 2.36 2.18 2.60 1.88 2.40 1.78 2.54
10×5

30×10
50×20

1.361b

3.404
1.898

1.150
3.786
1.729

0.846
3.611
1.546

1.311
3.853
1.590

1.172
2.496
0.403

1.108
3.901
2.229

1.359
3.693
2.625

1.183
3.954
1.403

1.518
4.972
2.501

1.172
2.496
0.403

1.202
4.031
1.471

1.124
2.559
0.410

1.178
3.068
1.063

0.791
2.394
0.441 0.05

Sum 6.663 6.665 6.003 6.754 4.071 7.238 7.677 6.540 8.991 4.071 6.704 4.093 5.309 3.626
10×5

30×10
50×20

1.196
2.880
1.901

1.143
2.503
1.654

1.017
2.938
1.810

1.385
2.719
1.765

1.211
1.499
0.370

1.206
3.419
1.829

1.040
3.507
3.271

1.137
3.110
1.976

1.210
3.199
2.394

1.211
1.499
0.370

1.226
2.793
1.559

1.132
1.479
0.444

0.792
2.480
1.516

0.920
1.466
0.422 0.1

Sum 5.977 5.300 5.765 5.869 3.080 6.454 7.818 6.223 6.803 3.080 5.578 3.055 4.788 2.808
10×5

30×10
50×20

1.208
2.101
1.749

0.929
2.540
1.661

0.871
2.364
1.557

1.278
2.393
1.643

1.044
1.542
0.351

0.895
2.209
1.967

0.718
2.323
2.977

0.903
3.064
2.332

0.938
2.645
2.069

1.044
1.542
0.351

1.054
2.130
1.606

0.972
1.367
0.358

0.852
3.533
1.221

0.832
1.405
0.330 0.5

Sum 5.058 5.130 4.792 5.314 2.937 5.071 6.018 6.299 5.652 2.937 4.790 2.697 5.606 2.567
10×5

30×10
50×20

0.856
2.329
1.700

0.788
2.247
1.447

0.645
2.641
1.653

1.033
2.218
1.505

1.009
1.340
0.351

1.016
3.286
2.433

0.845
2.889
2.483

0.607
2.059
2.279

0.753
2.829
2.023

1.009
1.340
0.351

0.751
2.788
1.890

0.920
1.314
0.339

0.712
2.508
1.435

0.781
1.437
0.330 1.0

Sum 4.885 4.481 4.939 4.756 2.700 6.735 6.217 4.944 5.604 2.700 5.429 2.573 4.655 2.547
a average absolute deviation for λ = 0
b average percentage deviation for λ > 0

 From the results in Table 5, we have found that IEDDGA
IMSTGA, MIX1GA, and MIX3GA rules are good algorithms
for problems with λ = 0 (notice that they are more oriented to
the minimization of tardiness-based criteria), and they are
slightly statistically significantly different from NEHGA (or
INEHGA, which yields the same results), MIX2GA and
MIX4GA. However, for NEHGA, INEHGA, MIX2GA and
MIX4GA there are no statistically significant differences for
all problems, but they were largely statistically significantly
different for the large problem sizes with λ > 0.
Consequently NEHGA, INEHGA, MIX2GA and MIX4GA
are good overall choices for GA with using biased initial
solutions instead of random initial solutions.

9 Conclusions

In this paper, we have investigated both constructive and
iterative (GA-based) approaches for minimizing a convex
combination of makespan and the number of tardy jobs for the
flexible flow shop problem with unrelated parallel machines
and setup times, which is often occurring in the textile
industry. All algorithms are based on the list scheduling
principle by developing job sequences for the first stage and
assigning and sequencing the remaining stages by both the
permutation and FIFO approaches. The constructive
algorithms are compared to each other. It is shown that NEH
is an excellent constructive algorithm for minimizing the

13

objective function considered. In particular, the NEH
algorithm is most superior to the other constructive algorithms
regardless polynomial improvement heuristics.
 In addition, we use GA-based algorithms as improving
algorithms. Before we studied the influence of the initial
population on the performance of GA, we tested the GA
parameters. We have found that OPX crossover is certainly
superior to PMX, whereas we recommend that the PI move
should be selected as the mutation operator for problems with
λ = 0, and the shift move for the others with λ > 0. We have
fixed the crossover and mutation rates at 0.8 and 0.5,
respectively. For the recommended GA parameters, we
investigated the selection of a starting population by using the
constructive algorithms. The variants NEHGA, INEHGA,
MIX2GA and MIX4GA can all be recommended in general.
 Further research can be done to use other improving
algorithms such as tabu search, simulated annealing, or ant
colony algorithms. The choice of good parameters for them
should be tested. In addition, the influence of the starting
solution should be investigated. Moreover, hybrid algorithms
should be developed by using a local search algorithm within
a GA. This means that, after generating an offspring, this
solution should be improved by applying for instance tabu
search or simulated annealing before applying the selection
criterion of GA.

Acknowledgements. This work was supported in part by

INTAS (project 03-51-5501).

References

1. Baker KR (1974) Introduction to Sequencing and Scheduling. John

Wiley & Sons, New York
2. Gupta JND, Krüger K, Lauff V, Werner F, Sotskov YN (2002)

Heuristics for hybrid flow shops with controllable processing times.
Comput Oper Res 29(10): 1417–1439

3. Alisantoso D, Khoo LP, Jiang PY (2003) An immune algorithm
approach to the scheduling of a flexible PCB flow shop. Int J Adv
Manuf Tech 22(11–12): 819–827

4. Lin HT, Liao CJ (2003) A case study in a two-stage hybrid flow
shop with setup time and dedicated machines. Int J Prod Econ 86(2):
133–143

5. Wang W, Hunsucker JL (2003) An evaluation of the CDS heuristic
in flow shops with multiple processor. J Chinese Inst Ind Eng 20(3):
295–304

6. Linn R, Zhang W (1999) Hybrid flow shop scheduling: A survey
Comput Ind Eng 37(1–2): 57–61

7. Wang W (2005) Flexible flow shop scheduling: Optimum,
heuristics, and artificial intelligence solutions,” Expert Systems
22(2): 78–85

8. Arthanari TS, Ramamurthy KG (1971) An extension of two
machines sequencing problem. Opsearch 8(1): 10–22

9. Salvador MS (1973) A solution to a special case of flow shop
scheduling problems. in: Elmaghraby SE (ed.), Symposium of the
Theory of Scheduling and Applications. Springer, New York: 83–
91.

10. Brah SA, Hunsucker JL (1991) Branch and bound algorithm for the
flow shop with multiple processors. Eur J Oper Res 51(1): 88–99.

11. Portmann MC, Vignier A, Dardilhac D, Dezalay D (1998) Branch
and bound crossed with GA to solve hybrid flowshops. Eur J Oper
Res 107(2):389–400

12. Moursli O, Pochet Y (2000) Branch and bound algorithm for the
hybrid flowshop. Int J Prod Econ 64(1–3): 113–125

13. Gupta JND (1988) Two-stage, hybrid flow shop scheduling
problem. J Oper Res Soc 39(4):. 359–364

14. Sriskandarajah C, Sethi SP (1989) Scheduling algorithms for
flexible flowshops: worst case and average case performance. Eur J
Oper Res 43(2): 143–160

15. Guinet A, Solomon MM, Kedia PK, Dussauchoy A (1996) A
computational study of heuristics for two-stage flexible flowshops.
Int J Prod Res 34(5): 1399–1415

16. Gupta JND, Tunc EA (1994) Scheduling a two-stage hybrid
flowshop with separable setup and removal times. Eur J Oper Res
77(3): 415–428

17. Santos DL, Hunsucker JL, Deal DE (1996) An evaluation of
sequencing heuristics in flow shops with multiple processors.
Comput Ind Eng 30(4): 681-691

18. Jones DF, Mirrazavi SK, Tamiz M (2002) Multi-objective meta-
heuristics: An overview of the current state-of-art. Eur J Oper Res
137(1): 1-9

19. Gen M, Cheng R (1997) Genetic algorithms and engineering design.
Willy, New York

20. Gen M, Cheng R (2000) Genetic algorithm & engineering
optimization. Willy, New York

21. Reeves CR (1995) A genetic algorithm for flowshop sequencing.
Comput Oper Res 22(1): 5-13

22. Cheng R, Gen M, Tozawa T (1995) Minmax earliness/tardiness
scheduling in identical parallel machine system using genetic
algorithms. Comput Ind Eng 29(1–4): 513–517

23. Ruiz R, Maroto C, Alcaraz J (2005) Solving the flowshop
scheduling problem with sequence dependent setup times using
advanced metaheuristics. Eur J Oper Res 165(1): 34–54

24. Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2006) A survey
of scheduling problems with setup times or cost. Eur J Oper Res (to
appear).

25. Palmer DS (1965) sequencing jobs through a multi-stage process in
the minimum total time--a quick method of obtaining a near
optimum.Operat Res Quart 16(1): 101–107

26. Campbell HG, Dudek RA, and Smith ML (1970) A Heuristic
algorithm for the n-Job m-Machine sequencing problem. Manag Sci
16(10): 630–637

27. Gupta JND (1971) A functional heuristic algorithm for the flow-
shop scheduling problem. Operat Res Quart 22(1): 39-47

28. Dannenbring DG (1977) An evaluation of flow shop sequencing
heuristics. Manag Sci 23(11): 1174-1182

29. Nawaz M, Enscore Jr. E, Ham I (1983) A heuristic algorithm for the
m-machine, n-job flowshop sequencing problem. OMEGA Int J
Manag Sci 11(1): 91–95

30. Pinedo M, Chao X (1999) Operations scheduling with applications
in manufacturing and services. Irwin/McGraw-Hill, New York

31. Holland JA (1975) Adaptation in natural and artificial systems.
Annn Arbor. University of Michigan

32. Werner F (1984) On the solution of special sequencing problems.
PhD Thesis, TU Magdeburg.

33. Rajendran C, Ziegler H (2003) Scheduling to minimize the sum of
weighted flowtime and weighted tardiness of jobs in a flowshop
with sequence-dependent setup times. Eur J Oper Res 149(3): 513–
522

