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Algorithms for flexible flow shop problems with unrelated parallel 
machines, setup times, and dual criteria 
 
 
  

In textile industries, production facilities are established as 
multi-stage production flow shop facilities where a production 
stage may be made up of parallel machines.  It is known as 
flexible or hybrid flow shop environment. This paper 
considers the problem of scheduling n independent jobs in 
such an environment.  In addition, we also consider the 
general case in which parallel machines in each stage may be 
unrelated. Each job is processed in ordered operations on a 
machine of each stage.  Its release date and due date are 
given.  Preemption of jobs is not permitted.  We consider both 
sequence- and machine-dependent setup times.  The problem 
is to determine a schedule that minimizes a convex 
combination of makespan and the number of tardy jobs.  A 0-
1 mixed integer program of the problem is formulated.  Since 
this problem class is NP-hard in the strong sense, we develop 
heuristic algorithms to solve this problem approximately.  
Firstly, several basic dispatching rules and well-known 
constructive heuristics for flow shop makespan scheduling 
problems are generalized to the problem under consideration.  
We sketch how from a job sequence a complete schedule for 
the flexible flow shop problem with unrelated parallel 
machines can be constructed. Then genetic algorithms are 
suggested. We discuss the components of these algorithms and 
test their parameters. The performance of the heuristics is 
compared relative to each other on a set of test problems with 
up to 50 jobs and 20 stages. 
 
Keywords:  Flexible flow shop scheduling; Mathematical 
programming; Constructive algorithms; Genetic algorithms;  
 

1  Introduction 
 
Production scheduling can be defined as the allocation of 
available production resources over time to perform a 
collection of tasks [1].  It is an important decision making 
process in the operation level.  In a modern manufacturing 
environment, many scheduling problems occur.  Most of the 
scheduling problems are very significant and hard to solve 
owing to the complex nature of the problems.  A textile 
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facility environment, an example of a scheduling problem, 
will be discussed in this paper.   
 In textile manufacturing, products that contain fibers, such 
as clothing, tires, and yarn are made.  Its production unit can 
hardly fit in any classical scheduling model.  Instead, such a 
production unit is characterized by multi-stage production 
flow shop facilities, where a production stage may be made up 
of parallel production lines, machines or any other production 
facility.  At some stages, the facilities (machines, lines, etc.) 
are duplicated in parallel in order to increase the overall 
capacities of the shop floor, or in order to balance the 
capacities of the stages, or either to eliminate or reduce the 
impact of bottleneck stages on the overall shop floor 
capacities known as flexible flow shop, multiprocessor flow 
shop, or hybrid flow shop environment. 
 In addition, setup times and costs incur when machines 
often have to be reconfigured or cleaned between jobs.  This 
process is known as a changeover or setup.  If the length of 
the setup depends on the job just completed and on the one 
about to be started, then the setup times are sequence-
dependent which often occurs in such an industry.  For 
instance, in the weaving operation, the setup times depend on 
the types of clothes being processed in sequence.  Another 
example arises in the dying operation.  Every time a new 
color is used, the coloring devices must be cleaned.  The 
cleanup time often depends on the color just used as well as 
the color about to be used.   
 A flexible flow shop environment is a generalization of the 
classical flow shop model.  There are k stages and some stages 
may have only one machine, but at least one stage must have 
multiple machines.  The jobs have to visit the stages in the 
same order string from stage one through stage k.  A machine 
can process at most one job at a time and a job can be 
processed by at most one machine at a time.  Preemption of 
such a processing is not allowed.  The problem consists of 
assigning jobs to machines at each stage and sequencing the 
jobs assigned to the same machine so that some optimality 
criteria are minimized.  
 Although the flexible flow shop problem has been widely 
studied in the literature, most of the studies related to flexible 
flow shop problems are concentrated on problems with 
identical processors, see for instance, Gupta, Krüger, Lauff, 
Werner and Sotskov [2], Alisantoso, Khoo, and Jiang [3], Lin 
and Liao [4] and Wang and Hunsucker [5].  In a real world 
situation, it is common to find newer or more modern 
machines running side by side with older and less efficient 
machines. Even though the older machines are less efficient, 
they may be kept in the production lines because of their high 
replacement costs. The older machines may perform the same 
operations as the newer ones, but would generally require a 
longer operating time for the same operation. In this paper, 
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the flexible flow shop problem with unrelated parallel 
machines is considered, that is, there are different parallel 
machines at every stage, and speeds of the machines are 
dependent on the jobs. Moreover, several industries encounter 
setup times which result in even more difficult scheduling 
problems. In this paper, both sequence- and machine-
dependent setup time restrictions are taken into account as 
well.  
 A detailed survey for the flexible flow shop problem is 
given by Linn and Zang [6] and Wang [7].  Most of the earlier 
literature has considered the simple case of only two stages. 
Arthanari and Ramamurthy [8] and Salvador [9] are among 
the first who define the flexible flow shop problem.  They 
propose a branch and bound method to tackle the problem. 
Such a method is an exact solution technique which 
guarantees optimal solutions. However, the exact algorithm 
presented can only be applied to very small instances. Other 
exact approaches for multi-stage flexible flow shop problems 
are proposed by many authors. Brah and Hunsucker [10] 
present a branch and bound algorithm, and it is claimed that 
the method could also be used to optimize other criteria than 
makespan. Portmann, Vignier, Dardihac and Dezalay [11] 
improve the branch and bound method of Brah and Hunsucker 
by improving their lower bound and reducing the number of 
branches used in the search tree. Moursli and Pochet [12] 
propose a branch and bound algorithm for the hybrid flow 
shop scheduling problem, each stage being composed of 
identical parallel machines. 
 When an exact algorithm is applied to large flexible flow 
shop problems in particular, the optimum approach can take 
hours or days to derive a solution. On the other hand, a 
heuristic approach is much faster but does not guarantee an 
optimum solution. Gupta [13] proposes heuristic techniques 
for a simplified flexible flow shop makespan problem with 
two stages and only one machine in the second stage. The 
proposed heuristics are based on extensions of Johnson’s 
algorithm. Sriskandarajah and Sethi [14] develop simple 
heuristic algorithms for the two-stage flexible flow shop 
problem. They discuss the worst and average case 
performance of algorithms of finding minimum makespan 
schedules. Their solutions are based on Johnson’s rule.  
Guinet, Solomon, Kedia, and Dussauchoy [15] propose a 
heuristic for the makespan minimization problem in a two-
stage flexible flow shop based on Johnson’s rule. They 
compare this heuristic with the Shortest Processing Time 
(SPT) and the Longest Processing Time (LPT) dispatching 
rules. They conclude that the LPT rule gives good results for 
the makespan problem in a two-stage flexible flow shop. 
Gupta and Tunc [16] consider the two-stage flow shop 
scheduling problem when there is one machine at stage one 
and the number of identical machines in parallel at stage two 
is less than the total number of jobs.  The setup and removal 
times of each job at each stage are separated from the 
processing times. They propose heuristic algorithms that are 
empirically tested to determine the effectiveness in finding an 
optimal one. Santos, Hunsucker and Deal [17] investigate 
scheduling procedures which seek to minimize the makespan 
in a static flow shop with multiple processors. Their method is 

to generate an initial permutation schedule based on the 
Palmer, CDS, Gupta and Dannenbring flow shop heuristics, 
and such a heuristic is then followed by the application of the 
First in First out (FIFO) rule.  
 The question raised for the constructive algorithms is 
whether it is possible to improve their solution quality.  
Stagnation in a local optimum is one drawback of constructive 
algorithms, while most iterative algorithms (or artificial 
intelligent search techniques) always try to find a better 
solution or escape from a local optimum to reach globally 
better solutions.  Jones, Mirrazavi, and Tamiz [18] state that 
70% of the articles utilize genetic algorithms as the primary 
metaheuristic, 24% simulated annealing and only 6% tabu 
search.  The genetic algorithm is so popular due to the 
flexibility of this technique.  Thus, to determine near-optimal 
solutions, a genetic algorithm is proposed as an iterative 
algorithm in this paper as well. 
 Genetic algorithms are stochastic search methods for 
optimization problems based on the mechanism of natural 
selection and genetics by using the concept of the survival of 
the fittest tenet and offspring creation of Darwinian evolution.  
Recently, a genetic algorithm has been applied to harder 
combinatorial optimization problems [19, 20] because it has 
better characteristics, e.g. there is a smaller effect on the 
calculations when the system becomes more complex or 
larger. For example, Reeves [21] applies a genetic algorithm 
to the flow shop makespan problem.  Cheng, Gen, and 
Tozawa [22] address the earliness/tardiness scheduling 
problem with identical parallel machines. A genetic algorithm 
is also applied to solve this problem.  Ruiz, Maroto, and 
Alcaraz [23] use a genetic algorithm to deal with the 
permutation flow shop scheduling problem with sequence-
dependent setup times.  However, little research has been 
done for flexible flow shop scheduling problems, especially 
for the general case with unrelated parallel machines (see for 
instance the recent review on scheduling with setup times by 
Allahverdi, Ng, Cheng, and Kovalyov [24]).  Thus, in this 
paper we will investigate how to apply a genetic algorithm to 
solve the flexible flow shop problem with unrelated parallel 
machines.  
 Although the genetic algorithm has gained many 
applications, it is reported that the traditional genetic 
algorithm often suffers from the trouble of premature 
convergence, the difficulty in constructing fitness functions 
and parameter dependence.  So far, many improvements have 
been proposed to enhance the performance of a genetic 
algorithm, especially by the use of particular initial 
populations or a hybrid genetic algorithm. 
 The purpose of this paper is to present and compare several 
constructive and genetic algorithms to solve the flexible flow 
shop scheduling problem with unrelated parallel machines and 
sequence- and machine-dependent setup times. In addition, 
while many papers have studied only the makespan criterion, 
we consider this scheduling problem with two optimization 
criteria. One reason for this consideration is the increasing 
pressure of high competition while customers expect ordered 
goods to be delivered on time.  
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 The rest of the paper is organized as follows: The problem 
considered in this paper is described in Section 2. The 
mathematical model for this problem is introduced in Section 
3. In Section 4, constructive heuristics for the flexible flow 
shop problem are sketched and improvement heuristics are 
proposed in Section 5 whereas Section 6 and Section 7 
discuss the variants of the genetic algorithm.  Computational 
results for the heuristics are briefly discussed in Section 8.  
Conclusions are given in Section 9. 
 
2 Problem description 
 
In a flexible flow shop problem, a set of n independent 
customer orders, j ∈ {1, 2, ..., n}, with due dates, d1 , ... , dn 
has to be processed. Since customer orders may not arrive 
simultaneously in real-life problems, we assume that they are 
available at non-negative release times, r1 , ... , rn.   Each job j 
consists of a chain of k (k ≥ 2) different operations, 1

jO , ..., 
k
jO , which have to be processed in this order.  Each job j has 

its fixed standard processing time t
jps  for every stage t, t ∈ 

{1, 2, ..., k}.  Moreover, at each stage t, there is a set of mt 
unrelated parallel machines, i ∈ {1, 2, ..., mt}, where some of 
the production stages may have only one machine, but at least 
one production stage must have multiple machines.  Hence, 
machine i at stage t can process job j at the relative speed t

ijv . 

The processing time t
ijp  of job j on machine i at stage t is 

equal to t
ij

t
j vps .  

 This problem assumes a static and deterministic scheduling 
environment. There are no precedence relationships between 
jobs. Preemption is not allowed; i.e., once an operation is 
started, it must be completed without interruption. The 
operations of a job have to be realized sequentially, without 
overlapping between stages. Job splitting is not permitted. 
 Setup times considered in this problem are classified into 
two types: (1) a machine-dependent setup time and (2) a 
sequence-dependent setup time. A machine-dependent setup 
time deals with the setup time that depends on the machine to 
which a job is assigned. It is assumed to occur only when a 
job is assigned to a machine at the first position at some stage. 
It means that the length of the setup time (or changeover time) 

t
ijch  of job j if job j is assigned to machine i in the first 

position at any stage t depends on the machine performing it. 
Hence, a machine-dependent setup time is concerned with the 
job in the first sequence at any stage, whereas a sequence-
dependence setup time is considered between the further jobs.  

The setup time t
ljs between job l and job j at stage t, where 

job l is processed directly before job j on the same machine, 
might have different values depending on both the job just 
completed and the job to be processed (sequence-dependent). 
All setup times are known and constant.   

 The following two restrictions should also be fulfilled: (1) 
no machine can process more than one job at the same time; 
(2) no job can be processed by more than one machine at the 
same time. In addition, the release date t

ia  (or machine 
availability) of a machine for every stage is not necessarily 
equal to zero. However, the machines are continuously 
available from this availability time.  
 Let the completion time of job j be Cj, then 

Cmax = 
}..1{

max
nj∈

{ Cj }. 

 Moreover, let Uj = 1 if due date for job j is smaller than the 
completion time Cj of job j, otherwise Uj = 0. The total 
number of tardy jobs (ηT) is defined as 

ηT  = ∑
=

n

j
jU

1
 

 The objective is to seek a schedule that minimizes a convex 
combination of makespan and the number of tardy jobs. Thus, 
the objective function value is defined by  

λCmax + ( 1 – λ)ηT , 
where 0 ≤ λ ≤ 1.  λ denotes the weight (or relative 
importance) given to Cmax and ηT. 
 
3 Mathematical model 
 
In this section, we provide a 0-1 mixed integer linear 
programming formulation for the problem under 
consideration. 
 
3.1  Notations 
 

t stage index, t = 1, 2, 3, . . . , k 
i machine index, i = 1, 2, 3, . . . , mt

 

j, l job index, j, l = 1, 2, 3, . . . , n 
rj release date of job j  
mt number of parallel machines at stage t 
dj due date of job j 

t
jls  setup time between job j and job l at stage t 

t
ijch setup time of job j if job j is assigned to machine i at 

the first position at stage t  
t
jps  standard processing time of job j at stage t 

t
ijv  relative speed of machine i at stage t for job j 

t
ia  time when machine i at stage t becomes available 

t
ijlX 1 if job j is scheduled immediately before job l on 

machine i at stage t, and 0 otherwise 
t
jO  operating time of job j at stage t 
t
jC  completion time of job j at stage t 

Cmax the makespan  
Uj a Boolean variable;  1 if job j is tardy, and 0 

otherwise 
Tj tardiness of job j 
ηT the total number of tardy jobs in the schedule 
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3.2  Mathematical formulation 
 
The problem can be formulated as follows.  
 
minimize   λCmax + ( 1 – λ)ηT (1) 
Subject to: 

1
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Uj ≤ BTj ,∀j  (18)
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ηT  = ∑
=

n

j
jU

1
 ,∀j  (20)

Uj ∈ {0,1} ,∀j  (21)
 
 Equation (1) describes the objective function. We have 

t
liX 0  = 1 if the job l is sequenced as the first job on machine i 

at stage t, and t
nijX )1( +  = 1 if job j is sequenced as the last job 

on machine i at stage t. Constraints (2)–(8) ensure that the 
partial schedule on each machine at each stage is feasible. 
Constraint sets (2) and (3) ensure that only one job is assigned 
to each sequence position at each stage. Constraint sets (4) 
and (5) ensure that only one job will be assigned to the first 
and last positions, respectively, on each machine at each 
stage. Constraint (6) assures that after the job has been 

finished at any stage, it cannot be reprocessed at the same 
stage. Constraint (7) forces to construct a consistent sequence 
at every stage. Constraint (8) specifies the decision variables 

t
ijlX  as binary variables. Constraint (9) determines the 

operating time of every job which is dependent on the 
machine. Constraints (10)–(14) find the completion time of 
every job. Constraint (10) is a set of disjunctive constraints. It 
states that, if jobs j and l are scheduled on the same machine 
at a particular stage with job j scheduled before job l, then job 
j must complete the processing before job l can begin. This 
constraint set forces job l to follow job j by at least the 
processing time of job l plus the setup time from j to l if job l 
is immediately scheduled after job j. The value of B is set to a 
very big constant, i.e., greater than the sum of all job 
processing times and setup times. Constraint (11) ensures that 
the completion time of every job at each stage is a non-
negative value. Constraint (12) specifies the conjunctive 
precedence constraints for the jobs, which says that a job 
cannot start its processing at stage t + 1 before it finishes at 
stage t. Constraint (13) applies only to stage one, saying that a 
job cannot start its processing at stage one before its release 
date. Constraint (14) applies only to jobs that are assigned to 
the first sequence on each machine, that is, the job cannot start 
its processing before machine availability. Constraint set (15) 
links the makespan decision variable. Constraint sets (16) and 
(17) determine the correct value of the tardiness (Tj). 
Constraint set (16) determines the correct value of the lateness 
(Lj) and (17) specifies only the positive lateness as the 
tardiness (Tj = max{ 0, dC k

j − }). Constraint sets (18)–(21) 
link the decision variable of the number of tardy jobs, that is, 
if tardiness is larger than zero, the job is tardy; otherwise this 
job is not tardy. 
 It is noted that an optimal solution can be obtained by 
running a commercial mathematical programming software, 
CPLEX 8.0.0 and AMPL, with an Intel Pentium 4 2.00 GHz 
CPU.  We have found that the mathematical model can be 
used for solving problems with up to six jobs and four stages 
in acceptable time.   
 
4. Constructive algorithms 
 
Since the flexible flow shop scheduling problem is NP-hard, 
algorithms for finding an optimal solution in polynomial time 
are therefore unlikely to exist. Thus, heuristic methods are 
studied to find approximate solutions. Most researchers 
develop existing heuristics for the classical flexible flow shop 
problem with identical machines by using a particular 
sequencing rule for the first stage. They follow the same 
scheme (see Santos, Hunsucker and Deal [17]).  Firstly, a job 
sequence is determined according to a particular sequencing 
rule using modified flow shop algorithms as shown in detail in 
this section. Secondly, jobs are assigned as soon as possible to 
the machines at every stage using the job sequence 
determined for the first stage. There are basically two 
approaches for this subproblem. The first way is that for the 
other stages, i.e. from stage two to stage k, jobs are ordered 
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according to their completion times at the previous stage. This 
means that the FIFO (First in First out) rule is used to find the 
job sequence for the next stage by means of the job sequence 
of the previous stage. The second way is to sequence the jobs 
for the other stages by using the same job sequence as for the 
first stage. In other words, the permutation flexible flow shop 
sequencing problem determines the order of processing the 
jobs on all machines. We will make use of both procedures 
and briefly discuss the modifications for the problem under 
consideration.  
 Assume now that a job sequence for the first stage has 
already been determined. Then we have to solve the problem 
of scheduling n jobs on unrelated parallel machines with 
sequence- and machine-dependent  setup times using this 
given job sequence for the first stage. A greedy algorithm 
constructs a schedule for the n jobs at a particular stage 
provided that a certain job sequence for this stage is known 
(remind that the job sequence for this particular stage is 
derived either from the FIFO or from the permutation rule).  
The objective of the greedy scheduling algorithm is to 
minimize the flow time and the idle time of the machines. The 
idea is to balance evenly the workload in a heuristic way as 
much as possible.  
 In order to determine the job sequence for the first stage by 
some heuristic, we remind that the processing and setup times 
for every job are dependent on the machine and the previous 
job, respectively. This means that they are not fixed, until an 
assignment of jobs to machines for the corresponding stage 
has been done. Thus, for applying an algorithm for fixing the 
job sequence for stage one, an algorithm for finding the 
representatives of the machine speeds and the setup times is 
necessary. This algorithm is as follows.  
 The representatives of machine speed t

ijv /  and setup time 
t

ljs /  for stage t, t = 1,…,k , use the minimum, maximum and 

average values of the data. Thus, the representative of the 
operating time of job j at stage t is the sum of the processing 
time t

ij
t
j vps /  plus the representative of the setup time t

ljs / . 

Nine combinations of relative speeds and setup times will be 
used in our algorithm. The job sequence for the first stage is 
then fixed as the job sequence with the best function value 
obtained by all combinations of the nine different relative 
speeds and setup times.  
 For determining the job sequence for the first stage, we 
adapt and develop several basic dispatching rules and 
constructive algorithms for the flow shop makespan 
scheduling problem. Some of the dispatching rules are related 
to tardiness-based criteria, while other are used mainly for 
comparision purposes and to have a broad spectrum of 
solutions in the initial population. As the basic dispatching 
rules, we use the rules given by Shortest Processing Time 
(SPT), Longest Processing Time (LPT), Earliest Release Date 
first (ERD), Earliest Due Date first (EDD), Minimum Slack 
Time first (MST), Slack time per Processing time (S/P), and 
Hybrid SPT and EDD (HSE) rules, whereas as flow shop 

makespan heuristics, we use the algorithms given by Palmer 
[25], Campbell, Dudek, and Smith [26], Gupta [27], and 
Dannenbring [28] and the insertion heuristic by Nawaz, 
Enscore, and Ham [29]. Notice that the first four algorithms 
try to minimize makespan while the insertion heuristcs can be 
used for any regular optimization criterion and for the multi-
criteria problem under consideration too. 
 
4.1 Dispatching rules 
 
The Shortest Processing Time (SPT) rule is a simple 
dispatching rule, in which the jobs are sequenced in non-
decreasing order of the processing times, whereas the Longest 
Processing Time (LPT) rule orders the jobs in non-increasing 
order of their processing times.  In the single machine model, 
the SPT rule is proved that the sum of completion times and 
mean lateness are minimized by using it [1].  For parallel 
machines, the LPT rule tends to balance the workload over the 
machines. The reasoning is to keep jobs with short processing 
times to be assigned and sequenced without affecting the 
workload balance. However, due to the flexible flow shop 
problems with unrelated parallel machine, we have to adapt 
the SPT and LPT rules by using the representative of the 
operating time as stated above. Then, the best solution is 
selected among the nine combinations of relative machine 
speeds and setup times. 
 The Earliest Release Date first (ERD) rule is equivalent to 
the well-known first-in-first-out (FIFO) rule. The Earliest Due 
Date first (EDD) rule schedules the jobs according to non-
decreasing due dates of the jobs.  The ERD rule in a sense 
minimizes the variation in the waiting times of the jobs at a 
machine, whereas the EDD rule tends to minimize the 
maximum lateness [30].  The Minimum Slack Time first 
(MST) rule is a variation of the EDD rule.  This rule concerns 
the remaining slack of each job, defined as its due date minus 
the processing time required to process it. The Slack time per 
Processing time (S/P) is similar to the MST rule, but its slack 
time is divided by the processing time required as well.  
Again, the jobs are subsequently ranked in a non-decreasing 
order of each rule, and nine combinations of representatives 
of relative speeds and setup times are considered (expect for 
the EDD rule). 
 The hybrid SPT and EDD (HSE) rule is developed to 
combine both SPT and EDD rules.  Firstly, consider the 
processing times of each job and determine the relative 
processing time compared to the maximum processing time 
required.  Secondly, determine the relative due date compared 
to the maximum due date.  Next, calculate the priority value 
of each job by using the weight (or relative importance) given 
to Cmax and ηT for the relative processing time and relative due 
date. 
 
4.2 Palmer 
 
A heuristic developed by Palmer [25], in an effort to use 
Johnson’s rule, proposes a slope order index to sequence the 
jobs on the machines based on the processing times. The idea 
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is to give priority to jobs that have a tendency of progressing 
from short times to long times as they move through the 
stages.  It means that the first stage sequence can be generated 
based upon a non-increasing order of the slope indices. 

Now, the modified Palmer’s method (in the following 
denoted by PAL) for the flexible flow shop problem with 
unrelated parallel machines and sequence-dependent setup 
times is developed as follows.   

Let t
lps  be the standard processing time of job j  at stage t, 

t
ijv /  be the representative of the relative speed on machine i at 

stage t for job j, and t
ljs /  be the representative of the setup 

time between job l and job j at stage t. Then ),,( // t
lj

t
ij svjS  

denotes the slope index for job j at the relative speed t
ijv / and 

setup time t
ljs / .  PAL’s slope index for the flexible flow shop 

problem with unrelated parallel machines and setup times is 
calculated as follows: 

∑
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⎪
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4.3 Campbell, Dudek, and Smith 
 
Campbell, Dudek, and Smith [26] develop one of the most 
significant heuristic methods for the makespan problem 
known as CDS algorithm.  Its strength lies in two properties: 
(1) it uses Johnson’s rule in a heuristic fashion, and (2) it 
generally creates several schedules from which a “best” 
schedule can be chosen.  In so doing, k – 1 sub-problems are 
created and Johnson’s rule is applied to each of the sub-
problems.  Thus, k – 1 sequences are generated.  Since 
Johnson’s algorithm is a two-stage algorithm, a k-stage 
problem must be collapsed into a two-stage problem.  Let g be 
a counter for the k – 1 sub-problems.  Again, due to the 
unrelated parallel machines, the constructed processing time 
for the “first” stage is denoted as ),,,( // t

lj
t

ij svgja  where j 

denotes the job, g denotes the g-th sub-problem and  t
ijv /  and 

t
ljs / are the representatives of the relative speed and  setup 

time, respectively. Similarly, ),,,( // t
lj

t
ij svgjb  denotes the 

“second” stage processing time.  Given these definitions, the 
constructed processing times are calculated according to the 
following two equations: 
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4.4 Gupta 
 
Gupta [27] provides an algorithm denoted by GUP, in a 
similar manner as algorithm PAL by using a slope index.  

Denote by  ),,( // t
lj

t
ij svjG  the slope index of algorithm GUP 

for job j at relative speed t
ijv / and setup time t

ljs /  which is 
calculated from 
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 After calculating ),,( // t
lj

t
ij svjG  for all jobs, the jobs are 

subsequently ranked in a non-decreasing order of the slope 
indices.   
 
4.5 Dannenbring  
 
Like PAL’s rule, Dannenbring [28] develops a method by 
using Johnson’s algorithm as a foundation.  Furthermore, the 
CDS and PAL algorithms are also exhibited.  Dannenbring 
constructs only one two-stage problem, but the processing 
times for the constructed jobs reflect the behavior of PAL’s 
slope index.  In the following, this method is denoted by 
DAN. Moreover, let ),,( // t

lj
t

ij svja and ),,( // t
lj

t
ij svjb  be the 

processing times for the constructed two-stage problem.  They 
are calculated using the following equations: 
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4.6 Nawaz, Enscore and Ham 
 
 Nawaz, Enscore and Ham [29] develop the probably best 
constructive heuristic method for the permutation flow shop 
makespan problem, called NEH algorithm. It is based on the 
idea that a job with a high total operating time on the 
machines should be placed first at an appropriate relative 
order in the sequence. Thus, jobs are sorted in non-increasing 
order of their total operating time requirements. The final 
sequence is built in a constructive way, adding a new job at 
each step and finding the best partial solution.  For example, 
the NEH algorithm inserts a third job into the previous partial 
solution that gives the best objective function value under 
consideration.  However, the relative position of the two 
previous job sequence remains fixed.  The algorithm repeats 
the process for the remaining jobs according to the initial 
ordering of the total operating time requirements. 
 Again, to apply the NEH algorithm to the flexible flow 
shop problem with unrelated parallel machines, the total 
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operating times for calculating the job sequence for the first 
stage are calculated for the nine combinations of relative 
speeds of machines and setup times.  Contrary to the 
algorithms presented before, the NEH algorithm constructs 
job sequences by considering the minimization of the convex 
combination of makespan and tardy number of jobs. 
 
5 Improvement Heuristics 
 
After several constructive algorithms have been adapted in the 
previous section, we now describe a fast polynomial 
improvement heuristic applied to the solutions found by the 
constructive algorithms.  
 Since the constructive algorithms (especially some 
algorithms that are adapted from the flow shop makespan 
heuristics and some dispatching rules such as SPT, LPT rules 
without due date considerations) do not explicitly 
minimization of number of tardy jobs, in this section we will 
improve the solution by concerning the due date criterion. 
 In order to find a satisfactory solution to the multicriteria 
problem considered in this paper, we apply the following 
heuristic by using the shift neighborhood as a polynomial 
improvement mechanism based on the idea that we will 
consider the jobs that are tardy and move them randomly left 
and right in order to improve the overall criterion value. 
 
Step 1: Find a first stage sequence solution given for each 

combination of relative machine speed and setup 
times using a heuristic from Section 4 and set it as the 
current sequence solution and sequence list (L). 

Step 2:  While Sequence list (L) is not empty do 
- Choose the first job j in the sequence list. 
- If due date dj ≤ completion time k

jC , we randomly 

move the selected job left and right, and find the 
best sequence solution among the two neighbors 
and update the best sequence solution as the 
current sequence solution. 

   - Delete job j from the sequence list. 
    end while 
 
 Reminding that there are nine combination solutions 
generated from a heuristic in each iteration and find the best 
solution for the multi-criteria problem under consideration 
among them. In step 2, there are generated at most 2×(n-1) 
neighbors, if all jobs under consideration are late, i.e. at most 
O(n) job sequences are investigated by the improvement 
algorithm.  
 
6 A genetic algorithm 
 
A genetic algorithm (GA) developed by Holland [31] is an 
iterative heuristic based on Darwin’s evolutionary theory 
about “survival of the fittest and natural selection”. It belongs 
to the evolutionary class of artificial intelligent (AI) 
techniques.  

 A GA is characterized by a parallel search of the state space 
in contrast to a point-by-point search by conventional 
optimization techniques. The parallel search is achieved by 
keeping a set of possible solutions under consideration, called 
a population. An individual in the population is a string of 
symbols, and it is an abstract representation of a solution. The 
algorithm starts with an initial generation of artificial 
individuals which are often created randomly. Each symbol is 
called a gene and each string of genes is termed as a 
chromosome. The individuals in the population are evaluated 
by some fitness measure to describe quantitatively how well 
the individual masters its task. The population of 
chromosomes evolves from some generation to the next 
through the use of two types of genetic operators: (1) unary 
operators such as mutation and inversion which change the 
genetic structure of a single chromosome, and (2) a higher-
order operator, referred to as crossover which consists of 
obtaining new individual(s) by combining the genetic material 
from two selected parent chromosomes. When applying 
crossover, two individuals (parents) are selected from the 
population and new solution(s), called offspring, is (are) 
created. Mutation creates a new solution by a random change 
on a selected individual. The genetic operators are applied to 
randomly selected parents to generate new offspring. Then the 
new population is selected out of the individuals of the current 
population and the new generated chromosomes.  
 
6.1 Representation 
 
The application of a GA requires the representation of a 
solution.  It is the primary and key issue to encode the 
problem into a search solution for the GA.  Consideration of a 
job permutation is straightforward and widely used in many 
previous works on GA for the flow shop problem (see e.g. 
Werner [32]). Thus, in our GA, we apply a permutation-based 
code (or job code) using integers as the chromosome coding 
scheme.  For instance, one chromosome of an example with 
nine jobs can be coded as the job sequence [9 3 6 5 8 7 2 4 1].   
 
6.2 Initialization 
 
Generally, the initial population is generated in a random way 
from the solution space.  Later we also use an initial 
population, when one or several particular solutions obtained 
by constructive algorithms are included.  
 
6.3 Evaluation 
 
During each generation, chromosomes are evaluated using 
some measure of fitness.  In most optimization applications, 
the fitness function is constructed based on the original 
objective function.  The fitness value of each chromosome is a 
key measure to guide the direction of the search in GA.  Due 
to the minimization problem, the fitness value must be in 
inverse proportion to the objective function value so that a 
fitter chromosome has a larger fitness value.   

 



8 
 

 

sizepopulationz
vf

vfitness
z

z _,...,1,
)(

1)( == ; 

 
where fitness(vz) is the fitness value and f(vz) is the objective 
function value of the z-th chromosome for the complete 
schedule generated from the corresponding job sequence for 
the first stage using a greedy algorithm (see Section 4). 

In this paper, the objective is to minimize a convex 
combination of makespan and the number of tardy jobs. Thus, 
the fitness value of a chromosome, fitness(vz), is given by 
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where Cmax(vz) is the makespan of the z-th chromosome (resp. 
of the resulting complete schedule), Uj(vz) is a Boolean 
variable for job j of the z-th chromosome which is equal to 1 
if job j is tardy, and 0 otherwise, and λ denotes the weight 
given to makespan and number of tardy jobs. The largest 
value of the fitness function is the lowest value of the convex 
combination of makespan and the number of tardy jobs.  In 
the denominator, value one is added in order to prevent a 
division by zero when the weight λ and the number of tardy 
jobs are equal to zero. 
 
6.4 Selection 
 
An elitist policy and enlarged sampling space technique are 
used.  Both parents and the offspring have the same chance of 
completing for survival. Then Holland’s proportionate 
selection or roulette wheel selection is employed to reproduce 
the next generation based on the current enlarged population.  
The idea is to determine a selection probability (also called 
survival probability) for each chromosome proportional to its 
fitness value.  For the chromosome vz with fitness fitness(vz), 
its selection probability prob(vz) is calculated as follows: 
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6.5 Crossover 
 
Crossover and mutation are the most important parts of a GA.  
The crossover is used in GA to exchange information among 
chromosomes to introduce offspring.  Based on a job 
permutation encoding, the partially mapped crossover (PMX) 
is mostly used, because it always creates a feasible offspring.  
In this paper, we will propose a new crossover by combining 
the order crossover (OX) and the position-based crossover 
(PBX), and we denote it as OPX.  Both OX and PBX create 
only one offspring, whereas PMX create a couple of 
offspring.  Thus, the proposed crossover can create a couple 
of offspring like PMX as well, that is both can be compared in 
a fair way.  
 
 

6.5.1  PMX 
 
PMX (partially mapped crossover) may be the most popular 
crossover operator when operating with permutations.  Firstly, 
choose two parents P1 and P2, e.g. P1 = [1 2 3 4 5 6 7 8 9] 
and P2 = [9 3 7 8 2 6 5 1 4], and two cutting sites along the 
string are randomly chosen, e.g. 3 and 7.  The substrings 
defined by the two cutpoints are called mapping sections.  
Secondly, exchange two substrings between parents to 
produce protochilderen, and then they will be [1 2 3|8 2 6 5|8 
9] and [9 3 7|4 5 6 7|1 4].  It is clear that protochildren will 
often lead to infeasible solutions.  Then, one needs to 
determine the mapping relationship between the two mapping 
sections and finally, we legalize the offspring using this 
mapping relationship.  In the first protochild, we can map the 
two infeasible genes 2 and 8 outside the mapping section, by 
using the mapping swaps, for instance, 2 in the first 
protochild’s mapping section can be mapped to 5 in the 
second protochild’s mapping section corresponding to the 
position. It does not however finish, because 5 is in the first 
protochild’s mapping section as well.  Again, 5 in the first 
protochild can be mapped to 7 in a similar way. At last, 2 in 
the first protochild can be swapped to 7.  Similarly, 8 in the 
first protochild can be mapped to 4.  Consequently, the first 
offspring is [1 7 3| 8 2 6 5| 4 9].  Then, the second offspring is 
analogously created as [9 3 2| 4 5 6 7|1 8]. 
 
6.5.2  OPX 
 
OPX (combined order and position-based crossover) may be a 
good crossover choice, in which it creates feasible solutions 
like PMX and combines the characteristics of OX and PBX as 
well.  We will create the first offspring based on OX, whereas 
the second offspring is characterized by PBX.  Again two 
parents P1 and P2 are randomly selected, and consider the 
same example as for PMX from the last section.  Then, 
randomly select a substring from the first parent, e.g. [1 2 3|4 
5 6 7|8 9].  Copy the substring into first protochild 
corresponding to the first parent position, e.g. [_ _ _|4 5 6 7|_ 
_].  Then, delete all the symbols from the second parent which 
are already in the substring and place its symbols into the 
unfixed positions in the first protochild from left to right 
according to the second parent order, e.g. [9 3 8|4 5 6 7|2 1].  
To create the second offspring, the second protochild is 
created by copying the symbols from the second parent that 
jobs are the same as the symbols in the substring in 
corresponding position, e.g. [_ _ 7 _ _ 6 5 _ 4].  Then, place 
the symbols form the first parent into the unfixed positions in 
the second protochild from left to right according to the order 
of the first parent regarding the substring symbols to produce 
the second offspring, [1 2 7 3 8 6 5 9 4]. 
 
6.6 Mutation 
 
Mutation serves to prevent all solutions in the population from 
falling into a local optimum.  In this paper, two mutation 
operations named pairwise interchange move, and shift move 
are tested.  
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6.6.1 Pairwise interchange move 
 
A pairwise interchange move (PI) exchanges a pair of genes 
πr, and πi, where 1 ≤ i, r  ≤ n and i ≠ r.  Such an operation 
swaps the gene at position r and one at position i — π’= 
[π1,…, πr-1, πi, πr+1, …, πi-1,πr, πi+1,…, πn]. For example, 
assume that randomly one parent, [4 9 8 7 3 1 6 2 5] is 
selected, and then randomly the couple of gene positions to be 
exchanged is selected, e.g. positions 1 and 3. Thus, the 
offspring will be [8 9 4 7 3 1 6 2 5]. The pairwise interchange 
neighborhood has n(n-1)/2 neighbors. 
 
6.6.2 Shift move 
 
A shift move (SM) changes the relative position of exactly 
one job. This means that a gene πr at position r is shifted to 
position i, while leaving all other relative gene orders 
unchanged.  If 1≤ r < i ≤ n, it is called a right shift — π’= 
(π1,…, πr-1, πr+1, …, πi, πr,…, πn).  If 1≤ i < r ≤ n, it is called a 
left shift — π’= (π1,… πr, πi,…,πr-1, πr+1, …, πn). For instance, 
assume that randomly one parent in the current generation is 
selected, say [4 9 8 7 3 1 6 2 5], and then randomly a couple 
of gene positions for performing the shift is selected, e.g. 
positions 2 and 7 (in this case, it is a right shift). The offspring 
will be [4 8 7 3 1 6 9 2 5].  However, if positions 7 and 2 are 
randomly selected (i.e. it is a left shift), the offspring will be 
[4 6 9 8 7 3 1 2 5]. The shift neighborhood has (n–1)2 
neighbors. 
 
6.7 Termination criteria 
 
In fact, after many generations of evolution throughout the 
repeated applications of selection, crossover, and mutation, 
the individuals in the population will often begin to look alike. 
At this point, the GA typically terminates because additional 
evolution will produce little improvement in fitness. Several 
termination criteria may be used, where the most simple one is 
to stop just after some predetermined number of generations.  
However, in this paper we will use a certain CPU time limit as 
the termination criterion. 
 

7 Choice of an initial population 
 
A GA has been proven to be effective for many combinatorial 
optimization problems [19, 20], and it seems natural to apply 
such an approach to scheduling problems.  To improve the 
quality of the solution finally obtained, we also investigated 
the influence of the choice of an appropriate initial population 
by using the constructive algorithms.   
 To this end, we used as one initial solution that obtained 
from the constructive algorithms SPT, LPT, ERD, EDD, 
MST, S/P, HSE, PAL, CDS, GUP, DAN and NEH, as well as 
the other polynomial improvement heuristics respectively (the 
other initial solutions are still randomly generated).  In 
addition, we used all selected constructive algorithms in 
parallel as a part of the initial population.   
 

8 Computational results 
 
Firstly, we studied the constructive algorithms that are 
separated into four main groups.  The first heuristic group are 
the simple dispatching rules such as SPT, LPT, ERD, EDD, 
MST, S/P, and HSE.  The second heuristic group are the flow 
shop makespan heuristics adapted such as PAL, CDS, GUP, 
DAN, and NEH.  The third and fourth heuristic groups are 
generated from the first two groups of heuristics where the 
solutions are improved by the polynomial improvement 
algorithm (based on shift moves), and they are denoted by the 
first letter “I” in front of the letters describing the heuristics of 
the first two groups. We used problems with 10 jobs × 5 
stages, 30 jobs × 10 stages, and 20 jobs × 10 stages. For all 
problem sizes, we tested instances with λ ∈ {0, 0.05, 0.1, 0.5, 
and 1} in the objective function. Ten different instances for 
each problem size have been run.   
 
Table 1 Average performance of constructive algorithms 

λ Problem 
 size SPT LPT ERD EDD MST SPP HSE 

10×5 
30×10 
50×20 

2.3 
6.1 
5.9 

1.7 
7.0 
7.1 

2.8 
6.4 
7.2 

3.1 
10.5 
14.7 

3.2 
10.4 
14.7 

3.0 
10.3 
12.8 

2.4 
6.0 
5.6 0 

Sum 14.3 15.8 16.4 28.3 28.3 26.1 14 
10×5 
30×10 
50×20 

18.019
17.115
8.204

12.04 
14.069
7.951

23.393 
18.933 
9.812 

23.259 
20.220 
11.411 

21.379 
17.544 
10.627 

21.269
16.943
9.544

18.029
15.844
8.6160.05

Sum 43.338 34.06 52.138 54.890 49.550 47.756 42.489
10×5 
30×10 
50×20 

17.068
16.154
8.076

11.024
12.677
7.694

22.058 
17.994 
9.663 

21.810 
18.669 
10.411 

19.369 
15.928 
9.596 

19.668
15.254
8.711

17.005
14.871
8.4390.1

Sum 41.298 31.395 49.715 50.890 44.893 43.633 40.315
10×5 
30×10 
50×20 

17.004
15.902
8.095

10.74 
12.075
7.576

21.682 
17.790 
9.663 

21.457 
17.908 
9.692 

18.345 
15.078 
8.823 

18.736
14.242
8.108

16.948
14.483
8.3640.5

Sum 41.001 30.391 49.135 49.057 42.246 41.086 39.795
10×5 
30×10 
50×20 

16.888
15.998

8.09 

10.647
12.122
7.549

21.551 
17.869 
9.656 

21.32 
17.938 
9.591 

18.106 
15.090 
8.714 

18.508
14.23 
8.017

16.888
15.998
8.0901.0

Sum 40.976 30.318 49.076 48.849 41.910 40.755 40.976
 

λ Problem 
size PAL CDS GUP DAN NEH 

10×5 
30×10 
50×20 

1.9 
6.1 
8.2 

1.2 
4.3 
5.1 

1.8 
5.9 
6.4 

2.0 
5.8 
7.8 

0.5 
0.5 
0.8 0 

Sum 16.2 10.6 14.1 15.6 1.8 
10×5 
30×10 
50×20 

10.892 
16.143 

7.58 

9.095 
11.527 
6.555 

13.322 
14.063 
7.709 

10.717 
14.121 
8.107 

1.815 
0.021 

0 0.05

Sum 34.615 27.177 35.094 32.945 1.836 
10×5 
30×10 
50×20 

9.906 
15.146 
7.216 

7.814 
10.513 
6.292 

12.225 
12.856 
7.517 

9.545 
13.163 
7.739 

2.136 
0 

0.026 0.1

Sum 32.268 24.619 32.598 30.447 2.162 
10×5 
30×10 
50×20 

9.884 
14.82 
7.028 

7.222 
10.089 
6.166 

12.001 
12.387 
7.486 

9.308 
12.821 
7.544 

2.563 
0.067 
0.076 0.5

Sum 31.732 23.477 31.874 29.673 2.706 
10×5 
30×10 
50×20 

9.813 
14.902 
6.996 

7.047 
10.156 
6.139 

11.871 
12.438 
7.472 

9.175 
12.902 
7.510 

2.46 
0.087 
0.048 1.0

Sum 31.711 23.342 31.781 29.587 2.595 
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Table 1 Average performance of constructive algorithms 
 

λ Problem 
size ISPT ILPT IERD IEDD IMST ISPP IHSE 

10×5 
30×10 
50×20 

0.9 
2.3 
3.1 

0.8 
3.5 
4.5 

1.4 
3.0 
4.1 

1.3 
4.3 
6.3 

1.6 
4.8 
5.0 

1.4 
4.6 
8.1 

1.0 
2.9 
4.1 0 

Sum 6.3 8.8 8.5 11.9 11.4 14.1 8 
10×5 

30×10 
50×20 

5.801 
9.299 
4.508 

4.889 
7.602 
5.195 

8.02 
10.022
4.474 

7.244 
10.591 
5.952 

6.675 
11.228 
6.539 

5.588 
7.282 
6.143 

6.855 
7.448 
5.092 

0.0
5 

Sum 19.608 17.686 22.516 23.787 24.442 19.013 19.395
10×5 

30×10 
50×20 

5.502 
8.720 
4.829 

2.909 
6.869 
4.785 

6.436 
9.834 
5.106 

7.004 
9.022 
6.252 

6.140 
10.883 
5.627 

6.76 
6.908 
5.578 

6.071 
9.005 
4.783 0.1 

Sum 19.051 14.563 21.376 22.278 22.65 19.246 19.859
10×5 

30×10 
50×20 

7.048 
8.690 
5.211 

3.068 
6.435 
4.681 

4.135 
9.506 
4.818 

7.819 
10.257 
5.296 

6.247 
8.482 
6.286 

5.559 
7.513 
5.219 

4.842 
9.936 
4.928 0.5 

Sum 20.949 14.184 18.459 23.372 21.015 18.291 19.706
10×5 

30×10 
50×20 

6.776 
8.882 
5.015 

2.548 
6.641 
4.668 

4.393 
9.645 
5.027 

8.101 
11.081 
5.622 

6.932 
8.711 
5.830 

5.699 
6.882 
5.377 

5.869 
8.759 
4.948 1.0 

Sum 20.673 13.857 19.065 24.804 21.473 17.958 19.576
 

λ Problem 
size IPAL ICDS IGUP IDAN INEH 

10×5 
30×10 
50×20 

0.9a 

3.3 
4.3 

0.5 
2.7 
2.5 

0.8 
3.6 
3.5 

1.1 
3.3 
4.7 

0.5 
0.5 
0.8 0 

Sum 8.5 5.7 7.9 9.1 1.8 
10×5 
30×10 
50×20 

3.701b 

7.336 
3.717 

1.949 
7.070 
4.174 

4.449 
8.984 
4.266 

2.251 
7.950 
5.703 

1.815 
0.021 

0 0.05 

Sum 14.754 13.193 17.699 15.904 1.836 
10×5 
30×10 
50×20 

3.402 
8.350 
3.485 

1.939 
6.838 
4.986 

3.555 
6.836 
4.958 

3.501 
7.680 
4.865 

2.136 
0 

0.026 0.1 

Sum 15.237 13.763 15.349 16.046 2.162 
10×5 
30×10 
50×20 

2.937 
7.221 
3.898 

1.901 
5.487 
4.755 

2.792 
7.946 
4.684 

1.446 
6.639 
4.291 

2.563 
0.067 
0.076 0.5 

Sum 14.056 12.143 15.422 12.376 2.706 
10×5 
30×10 
50×20 

3.144 
6.671 
4.546 

1.661 
5.962 
4.14 

3.073 
6.425 
4.717 

1.952 
5.811 
4.126 

2.46 
0.087 
0.048 1.0 

Sum 14.361 11.763 14.215 11.889 2.595 
a average absolute deviation for λ = 0 
b average percentage deviation for λ > 0 
 
 An experiment was conducted to test with data such as the 
standard processing times, relative machine speeds, setup 
times, release dates and due dates.  The standard processing 
times are generated uniformly from the interval [10,100].  
Due to the unrelated machine problem, the relative speeds are 
distributed uniformly in the interval [0.7,1.3].  The setup 
times, both sequence- and machine-dependent setup times, are 
generated uniformly from the interval [0,50], whereas the 
release dates are generated uniformly from the interval [0,20].  
The due date of a job is set in a way that it is similar to the 
approach presented by Rajendaran and Ziegler [33] and is as 
follows: 

dj  = total of mean setup time of a job on all stages + ∑
=

k

t

t
jps

1

 + 

(n – 1)×(mean processing time of a job on one 

machine)×U(0,1) 

where the mean processing time of a job on one machine is 
determined by summing the mean setup time and standard 
processing time of all jobs on all stages and dividing by the 
number of machines. 
  The results for the constructive algorithms are given in 
Table 1. We give the average (absolute for λ = 0 resp. 
percentage for λ > 0) deviation of a particular constructive 
algorithm from the best constructive solution for three 
problem sizes n× k. 
 From these results it is obvious that the constructive 
algorithms in the fourth heuristic group improved from flow 
shop makespan heuristics from the second heuristic group 
(i.e., PAL, CDS, GUP, DAN, and NEH) are better than the 
dispatching rules in the first heuristic group (i.e., SPT, LPT, 
EDD, MST, S/P, and HSE) as well as the third heuristic group 
improved from them.   
 Among the simple dispatching rules (heuristic Group I), 
HSE rule outperforms the other dispatching rules for λ = 0, 
and the LPT rule is better than the other rules for λ > 0.  
Among the adapted flow shop makespan heuristics in 
heuristic Group II, NEH algorithm is clearly the best 
algorithm among all studied constructive heuristics (but in 
fact, this algorithm takes the convex combination of both 
criteria into account when selecting partial sequences).  The 
CDS algorithm is certainly the algorithm on the second rank  
(but it is substantially worse than NEH even if the makespan 
portion in the objective function value is dominant, i.e. for 
large λ values).   
 When we apply the polynomial improvement (‘reinsertion‘) 
algorithm (denoted as the letter “I” first) to the solutions 
obtained by the dispatching rules and adapted flow shop 
makespan heuristics, we have found that the quality of the 
solution in terms of the deviation from the best solution can 
be improved by about 50 percentage except for NEH rule (it is 
even independent of the concrete value of λ).  It is noted that 
the NEH rule is not improved by using the improvement 
heuristics in INEH because the NEH rule is embedded by the 
insertion algorithm itself (it confirms the excellent solution 
quality by algorithm NEH).  However, the improvement of 
heuristics from the adapted flow shop makespan heuristics in 
the heuristic Group IV is better than the improvement of 
heuristics from the dispatching rules in the heuristic Group III 
(since for most of the problems, there is an substantial portion 
in the objective function value resulting from the makespan). 
 Secondly, we studied the GA with random initial 
population.  The purpose of this study is to determine the 
favorable GA parameters, i.e., population size, crossover 
types, mutation types, as well as crossover and mutation rates. 
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 Given the above three different problem sizes, the 
following GA parameter values were used in this test. 
Population size : 30, 50, 70 
Crossover type : PMX, OPX 
Mutation type : PI, SM 
Crossover rate  : 0.1 through 0.9, in steps of 0.1  
Mutation rate  : 0.1 through 0.9, in steps of 0.1 
 
Table 2 The effect of various population sizes on the 
performance of the genetic algorithm 

λ Problem size 30 50 70 
10×5 
30×10 
50×20 

0a 

2.0162 
0.4051 

0 
1.9159 
0.3194 

0 
2.2693 
0.4144 0 

Sum 2.4213 2.2353 2.6837 
10×5 
30×10 
50×20 

1.2516b 

3.4810 
1.5130 

1.5950 
3.9820 
1.7580 

1.1617 
4.7860 
1.9880 0.05 

Sum 6.2456 7.3350 7.9357 
10×5 
30×10 
50×20 

1.3760 
2.8070 
1.4780 

1.3430 
3.1730 
1.7710 

1.2540 
3.8990 
2.0200 0.1 

Sum 5.6610 6.2870 7.1730 
10×5 
30×10 
50×20 

1.5832 
2.9740 
1.2990 

1.4729 
3.2940 
1.6440 

1.4307 
3.9870 
1.7990 0.5 

Sum 5.8562 6.4109 7.2167 
10×5 
30×10 
50×20 

1.6149 
2.9260 
1.1870 

1.4609 
3.2730 
1.5270 

1.4021 
3.9370 
1.7190 1.0 

Sum 5.7279 6.2609 7.0581 
a average absolute deviation for λ = 0 
b average percentage deviation for λ > 0 
 
Table 3 The effect of the various crossover types on the 
performance of the genetic algorithm 

λ Problem size PMX OPX 
10×5 

30×10 
50×20 

0a 

2.2109 
0.3776 

0 
1.9234 
0.3817 0 

Sum 2.5885 2.3051 
10×5 

30×10 
50×20 

1.3214b 

4.1920 
1.7740 

1.0605 
3.9740 
1.7310 0.05 

Sum 7.2874 6.7655 
10×5 

30×10 
50×20 

1.4890 
3.3900 
1.7580 

1.1600 
3.1950 
1.7540 0.1 

Sum 6.6370 6.1090 
10×5 

30×10 
50×20 

1.6726 
3.5200 
1.5960 

1.3186 
3.3170 
1.5650 0.5 

Sum 6.7886 6.2006 

1.0 
10×5 

30×10 
50×20 

1.6434 
3.4740 
1.4790 

1.3418 
3.2830 
1.4760 

 Sum 6.5964 6.1008 
a average absolute deviation for λ = 0 
b average percentage deviation for λ > 0 
 
  From the preliminary tests, we set the time limit equal to 
one second for the problems with ten jobs, ten seconds for the 
problems with 30 jobs, and 30 seconds for the problems with 
50 jobs. Again, for all tests we considered instances with λ ∈ 

{0, 0.05, 0.1, 0.5, and 1}. Table 2 through 4 present the effect 
of the population size, crossover types and mutation types by 
using the average (absolute resp. relative) deviation from the 
best value as the performance measure. 
 From the full factorial experiment, we analyzed our results 
by means of a multi-factor Analysis of Variance (ANOVA) 
technique.  We have found that for population sizes, crossover 
types, and mutation types there were statistically significant 
differences.  In general, a small population size (30) is 
superior.  The OPX crossover is clearly superior to the PMX 
crossover.  Since there were some interactions between 
crossover types and mutation types for the problem size 30 
jobs × 10 stages, if we select OPX as the crossover type, 
pairwise interchange moves are better than shift moves for λ = 
0.  Consequently, the mutation operator should be based on 
pairwise interchanges for λ = 0 and on shifts of jobs 
otherwise. For ANOVA and Tukey’s test at a significance 
level α = 0.05 in the crossover and mutation rates, we have 
found that no particular mutation rate (we fixed 0.5) and 
crossover rate (we fixed 0.8) are superior to the others. 
 
Table 4 The effect of the various mutation types on the 
performance of the genetic algorithm 

λ Problem size PI SM 
10×5 
30×10 
50×20 

0a 

2.2016 
0.3632 

0 
1.9326 
0.3961 0 

Sum 2.5648 2.3287 
10×5 
30×10 
50×20 

1.3514b 
4.4330 
1.7510 

1.0305 
3.7330 
1.7550 0.05 

Sum 7.5354 6.5185 
10×5 
30×10 
50×20 

1.5430 
3.5940 
1.7700 

1.1060 
2.9910 
1.7430 0.1 

Sum 6.9070 5.840 
10×5 
30×10 
50×20 

1.7074 
3.6590 
1.5650 

1.2838 
3.1780 
1.5960 0.5 

Sum 6.9314 6.0578 
10×5 
30×10 
50×20 

1.6841 
3.4740 
1.4920 

1.3011 
3.2830 
1.4630 1.0 

Sum 6.6501 6.0471 
a average absolute deviation for λ = 0 
b average percentage deviation for λ > 0 
 
 Finally, we used the recommended GA parameters to test 
the choice of an appropriate initial population. The letters 
before letters GA denote the heuristic rule as one initial 
solution for GA. For example, SPTGA means that the SPT 
rule is used as one initial solution for GA, or RNDGA means 
that the initial population in GA is completely randomly 
generated.  In addition, we use some selected algorithms in 
parallel as a part of the initial population.  Based on each 
heuristic group, we use all solutions in each heuristic group 
stated above as a part of the initial population.  Consequently, 
we have four new choices of initial populations tested 
(denoted as MIX1GA, MIX2GA, MIX3GA, and MIX4GA, 
respectively).  
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Table 5 Comparisons of the genetic algorithm with different initial populations 
λ Problem 

size RNDGA SPTGA LPTGA ERDGA EDDGA MSTGA S/PGA HSEGA ISPTGA ILPTGA IERDGAIEDDGA IIMSTGA IS/PGA IHSEGA

10×5 
30×10 
50×20 

0 
1.26 
0.84 

0.04 
1.14 
0.92 

0.02 
1.16 
0.86 

0 
1.26 
0.92 

0 
1.04 
0.92 

0.04 
1.10 
0.76 

0 
1.26 
0.86 

0.02 
1.24 
1.04 

0.04 
1.18 
0.86 

0 
1.38 
0.98 

0.04 
1.34 
1.04 

0.02 
1.10 
0.64 

0 
1.02 
0.82 

0 
1.14 
0.88 

0.08 
1.18 
0.96 0 

Sum 2.10 2.10 2.04 2.18 1.96 1.90 2.12 2.30 2.08 2.36 2.42 1.76 1.84 2.02 2.22 
10×5 
30×10 
50×20 

1.080 
3.518 
1.400 

1.122 
3.780 
2.211 

1.091 
4.005 
1.735 

0.915 
4.100 
1.453 

1.007 
3.453 
1.971 

1.007 
3.139 
1.709 

1.049 
3.656 
1.549 

1.196 
3.396 
1.575 

1.328 
4.179 
2.226 

0.877 
4.262 
1.594 

1.018 
4.746 
1.808 

1.220 
3.485 
1.293 

1.568 
3.725 
1.896 

1.018 
3.456 
1.703 

1.162 
4.408 
2.523 0.05 

Sum 5.998 7.113 6.831 6.468 6.431 5.855 6.254 6.167 7.733 6.733 7.572 5.998 7.189 6.177 8.093 
10×5 
30×10 
50×20 

0.935 
2.666 
1.675 

1.129 
2.624 
1.952 

1.153 
2.956 
1.824 

1.399 
3.107 
1.570 

1.407 
2.748 
1.793 

1.237 
2.655 
1.800 

1.156 
2.862 
1.593 

1.035 
2.645 
2.042 

1.101 
3.255 
2.139 

0.995 
3.826 
2.879 

1.163 
3.166 
1.889 

1.114 
2.915 
2.044 

0.916 
3.437 
1.842 

1.120 
2.917 
1.632 

0.866 
3.796 
2.251 0.1 

Sum 5.276 5.705 5.933 6.076 5.948 5.692 5.611 5.722 6.495 7.700 6.218 6.073 6.195 5.669 6.913 
10×5 
30×10 
50×20 

1.070 
2.352 
1.651 

1.088 
2.512 
1.786 

1.066 
2.723 
1.880 

0.956 
2.646 
1.719 

0.987 
2.715 
1.841 

0.980 
2.896 
1.781 

1.040 
2.505 
1.540 

1.137 
2.836 
1.521 

0.892 
3.112 
2.130 

0.896 
2.532 
1.674 

0.591 
3.420 
1.864 

0.977 
2.336 
1.944 

0.847 
3.000 
1.756 

1.307 
2.224 
2.019 

1.287 
3.315 
2.171 0.5 

Sum 5.073 5.386 5.669 5.321 5.543 5.657 5.085 5.494 6.134 5.102 5.875 5.257 5.603 5.550 6.773 
10×5 
30×10 
50×20 

0.936 
2.253 
1.472 

1.298 
2.241 
1.635 

0.764 
2.118 
1.672 

1.007 
2.495 
1.481 

0.786 
2.040 
1.650 

0.929 
2.618 
1.450 

0.781 
2.420 
1.664 

1.298 
2.241 
1.635 

0.840 
3.045 
1.912 

0.773 
2.786 
2.000 

0.741 
3.203 
1.806 

1.198 
2.306 
1.526 

0.929 
3.493 
1.930 

1.290 
2.202 
2.032 

1.519 
3.770 
2.130 1.0 

Sum 4.660 5.174 4.554 4.983 4.476 4.997 4.865 5.174 5.797 5.558 5.750 5.029 6.352 5.524 7.419 
 

λ Problem 
size PALGA CDSGA GUPGA DANGA NEHGA IPALGA ICDSGA IGUPGA IDANGA INEHGA MIX1GA MIX2A MIX3A MIX4GA

10×5 
30×10 
50×20 

0.02a 

1.44 
0.72 

0.02 
1.20 
0.92 

0.02 
1.34 
0.88 

0.02 
1.24 
0.76 

0 
1.56 
1.04 

0.02 
1.12 
1.16 

0 
1.42 
1.10 

0 
1.30 
1.06 

0 
1.32 
0.86 

0 
1.56 
1.04 

0 
1.10 
0.78 

0 
1.38 
1.02 

0 
1.28 
0.50 

0 
1.50 
1.04 0 

Sum 2.18 2.14 2.24 2.02 2.60 2.30 2.52 2.36 2.18 2.60 1.88 2.40 1.78 2.54 
10×5 

30×10 
50×20 

1.361b 

3.404 
1.898 

1.150 
3.786 
1.729 

0.846 
3.611 
1.546 

1.311 
3.853 
1.590 

1.172 
2.496 
0.403 

1.108 
3.901 
2.229 

1.359 
3.693 
2.625 

1.183 
3.954 
1.403 

1.518 
4.972 
2.501 

1.172 
2.496 
0.403 

1.202 
4.031 
1.471 

1.124 
2.559 
0.410 

1.178 
3.068 
1.063 

0.791 
2.394 
0.441 0.05 

Sum 6.663 6.665 6.003 6.754 4.071 7.238 7.677 6.540 8.991 4.071 6.704 4.093 5.309 3.626 
10×5 

30×10 
50×20 

1.196 
2.880 
1.901 

1.143 
2.503 
1.654 

1.017 
2.938 
1.810 

1.385 
2.719 
1.765 

1.211 
1.499 
0.370 

1.206 
3.419 
1.829 

1.040 
3.507 
3.271 

1.137 
3.110 
1.976 

1.210 
3.199 
2.394 

1.211 
1.499 
0.370 

1.226 
2.793 
1.559 

1.132 
1.479 
0.444 

0.792 
2.480 
1.516 

0.920 
1.466 
0.422 0.1 

Sum 5.977 5.300 5.765 5.869 3.080 6.454 7.818 6.223 6.803 3.080 5.578 3.055 4.788 2.808 
10×5 

30×10 
50×20 

1.208 
2.101 
1.749 

0.929 
2.540 
1.661 

0.871 
2.364 
1.557 

1.278 
2.393 
1.643 

1.044 
1.542 
0.351 

0.895 
2.209 
1.967 

0.718 
2.323 
2.977 

0.903 
3.064 
2.332 

0.938 
2.645 
2.069 

1.044 
1.542 
0.351 

1.054 
2.130 
1.606 

0.972 
1.367 
0.358 

0.852 
3.533 
1.221 

0.832 
1.405 
0.330 0.5 

Sum 5.058 5.130 4.792 5.314 2.937 5.071 6.018 6.299 5.652 2.937 4.790 2.697 5.606 2.567 
10×5 

30×10 
50×20 

0.856 
2.329 
1.700 

0.788 
2.247 
1.447 

0.645 
2.641 
1.653 

1.033 
2.218 
1.505 

1.009 
1.340 
0.351 

1.016 
3.286 
2.433 

0.845 
2.889 
2.483 

0.607 
2.059 
2.279 

0.753 
2.829 
2.023 

1.009 
1.340 
0.351 

0.751 
2.788 
1.890 

0.920 
1.314 
0.339 

0.712 
2.508 
1.435 

0.781 
1.437 
0.330 1.0 

Sum 4.885 4.481 4.939 4.756 2.700 6.735 6.217 4.944 5.604 2.700 5.429 2.573 4.655 2.547 
a average absolute deviation for λ = 0 
b average percentage deviation for λ > 0 
 
 
 From the results in Table 5, we have found that IEDDGA 
IMSTGA, MIX1GA, and MIX3GA rules are good algorithms 
for problems with λ = 0 (notice that they are more oriented to 
the minimization of tardiness-based criteria), and they are 
slightly statistically significantly different from NEHGA (or 
INEHGA, which yields the same results), MIX2GA and 
MIX4GA.  However, for NEHGA, INEHGA, MIX2GA and 
MIX4GA there are no statistically significant differences for 
all problems, but they were largely statistically significantly 
different for the large problem sizes with  λ > 0.  
Consequently NEHGA, INEHGA, MIX2GA and MIX4GA 
are good overall choices for GA with using biased initial 
solutions instead of random initial solutions. 

9 Conclusions 
 
In this paper, we have investigated both constructive and 
iterative (GA-based) approaches for minimizing a convex 
combination of makespan and the number of tardy jobs for the 
flexible flow shop problem with unrelated parallel machines 
and setup times, which is often occurring in the textile 
industry.  All algorithms are based on the list scheduling 
principle by developing job sequences for the first stage and 
assigning and sequencing the remaining stages by both the 
permutation and FIFO approaches.  The constructive 
algorithms are compared to each other.  It is shown that NEH 
is an excellent constructive algorithm for minimizing the 
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objective function considered. In particular, the NEH 
algorithm is most superior to the other constructive algorithms 
regardless polynomial improvement heuristics.  
 In addition, we use GA-based algorithms as improving 
algorithms.  Before we studied the influence of the initial 
population on the performance of GA, we tested the GA 
parameters.  We have found that OPX crossover is certainly 
superior to PMX, whereas we recommend that the PI move 
should be selected as the mutation operator for problems with 
λ = 0, and the shift move for the others with λ > 0.  We have 
fixed the crossover and mutation rates at 0.8 and 0.5, 
respectively. For the recommended GA parameters, we 
investigated the selection of a starting population by using the 
constructive algorithms. The variants NEHGA, INEHGA, 
MIX2GA and MIX4GA can all be recommended in general.   
 Further research can be done to use other improving 
algorithms such as tabu search, simulated annealing, or ant 
colony algorithms.  The choice of good parameters for them 
should be tested.  In addition, the influence of the starting 
solution should be investigated.  Moreover, hybrid algorithms 
should be developed by using a local search algorithm within 
a GA. This means that, after generating an offspring, this 
solution should be improved by applying for instance tabu 
search or simulated annealing before applying the selection 
criterion of GA. 
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